1

Trigonometric Fundamentals

Definitions of Trigonometric Functions in Terms of Right Triangles

Let S and T be two sets. A function (or mapping or map) f from S to T (written as $f: S \rightarrow T$) assigns to each $s \in S$ exactly one element $t \in T$ (written $f(s)=t$); t is the image of s. For $S^{\prime} \subseteq S$, let $f\left(S^{\prime}\right)$ (the image of S^{\prime}) denote the set of images of $s \in S^{\prime}$ under f. The set S is called the domain of f, and $f(S)$ is the range of f.

For an angle θ (Greek "theta") between 0° and 90°, we define trigonometric functions to describe the size of the angle. Let rays $O A$ and $O B$ form angle θ (see Figure 1.1). Choose point P on ray $O A$. Let Q be the foot (that is, the bottom) of the perpendicular line segment from P to the ray $O B$. Then we define the sine (sin), cosine (cos), tangent (tan), cotangent (cot), cosecant (csc), and secant (sec) functions as follows, where $|P Q|$ denotes the length of the line segment $P Q$:

$$
\begin{aligned}
\sin \theta=\frac{|P Q|}{|O P|}, & \csc \theta=\frac{|O P|}{|P Q|} \\
\cos \theta=\frac{|O Q|}{|O P|}, & \sec \theta=\frac{|O P|}{|O Q|} \\
\tan \theta=\frac{|P Q|}{|O Q|}, & \cot \theta=\frac{|O Q|}{|P Q|}
\end{aligned}
$$

First we need to show that these functions are well defined; that is, they only depends on the size of θ, but not the choice of P. Let P_{1} be another point lying on ray $O A$, and let Q_{1} be the foot of perpendicular from P_{1} to ray $O B$. (By the way, " P sub $1^{\prime \prime}$ is how P_{1} is usually read.) Then it is clear that right triangles $O P Q$ and $O P_{1} Q_{1}$ are similar, and hence pairs of corresponding ratios, such as $\frac{|P Q|}{|O P|}$ and $\frac{\left|P_{1} Q_{1}\right|}{\left|O P_{1}\right|}$, are all equal. Therefore, all the trigonometric functions are indeed well defined.

Figure 1.1.
By the above definitions, it is not difficult to see that $\sin \theta, \cos \theta$, and $\tan \theta$ are the reciprocals of $\csc \theta, \sec \theta$, and $\cot \theta$, respectively. Hence for most purposes, it is enough to consider $\sin \theta, \cos \theta$, and $\tan \theta$. It is also not difficult to see that

$$
\frac{\sin \theta}{\cos \theta}=\tan \theta \quad \text { and } \quad \frac{\cos \theta}{\sin \theta}=\cot \theta
$$

By convention, in triangle $A B C$, we let a, b, c denote the lengths of sides $B C, C A$, and $A B$, and let $\angle A, \angle B$, and $\angle C$ denote the angles $C A B, A B C$, and $B C A$. Now, consider a right triangle $A B C$ with $\angle C=90^{\circ}$ (Figure 1.2).

Figure 1.2.
For abbreviation, we write $\sin A$ for $\sin \angle A$. We have

$$
\begin{array}{lll}
\sin A=\frac{a}{c}, & \cos A=\frac{b}{c}, & \tan A=\frac{a}{b} \\
\sin B=\frac{b}{c}, & \cos B=\frac{a}{c}, & \tan B=\frac{b}{a}
\end{array}
$$

and

$$
\begin{array}{rlrl}
a=c \sin A, & & a=c \cos B, & \\
b=c \sin B, & & b=c \cos A, & \\
b=a \tan B ; \\
c=a \csc A, & c=a \sec B, & c=b \csc B, \quad c=b \sec A .
\end{array}
$$

It is then not difficult to see that if A and B are two angles with $0^{\circ}<A, B<90^{\circ}$ and $A+B=90^{\circ}$, then $\sin A=\cos B, \cos A=\sin B, \tan A=\cot B$, and $\cot A=\tan B$. In the right triangle $A B C$, we have $a^{2}+b^{2}=c^{2}$. It follows that

$$
(\sin A)^{2}+(\cos A)^{2}=\frac{a^{2}}{c^{2}}+\frac{b^{2}}{c^{2}}=1 .
$$

It can be confusing to write $(\sin A)^{2}$ as $\sin A^{2}$. (Why?) For abbreviation, we write $(\sin A)^{2}$ as $\sin ^{2} A$. We have shown that for $0^{\circ}<A<90^{\circ}$,

$$
\sin ^{2} A+\cos ^{2} A=1
$$

Dividing both sides of the above equation by $\sin ^{2} A$ gives

$$
1+\cot ^{2} A=\csc ^{2} A, \quad \text { or } \quad \csc ^{2} A-\cot ^{2} A=1
$$

Similarly, we can obtain

$$
\tan ^{2} A+1=\sec ^{2} A, \quad \text { or } \quad \sec ^{2} A-\tan ^{2} A=1
$$

Now we consider a few special angles.
In triangle $A B C$, suppose $\angle A=\angle B=45^{\circ}$, and hence $|A C|=|B C|$ (Figure 1.3, left). Then $c^{2}=a^{2}+b^{2}=2 a^{2}$, and so $\sin 45^{\circ}=\sin A=\frac{a}{c}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$. Likewise, we have $\cos 45^{\circ}=\frac{\sqrt{2}}{2}$ and $\tan 45^{\circ}=\cot 45^{\circ}=1$.

Figure 1.3.
In triangle $A B C$, suppose $\angle A=60^{\circ}$ and $\angle B=30^{\circ}$ (Figure 1.3, right). We reflect A across line $B C$ to point D. By symmetry, $\angle D=60^{\circ}$, so triangle $A B D$ is equilateral. Hence, $|A D|=|A B|$ and $|A C|=\frac{|A D|}{2}$. Because $A B C$ is a right
triangle, $|A B|^{2}=|A C|^{2}+|B C|^{2}$. So we have $|B C|^{2}=|A B|^{2}-\frac{|A B|^{2}}{4}=\frac{3|A B|^{2}}{4}$, or $|B C|=\frac{\sqrt{3}|A B|}{2}$. It follows that $\sin 60^{\circ}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}, \sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2}$, $\tan 30^{\circ}=\cot 60^{\circ}=\frac{\sqrt{3}}{3}$, and $\tan 60^{\circ}=\cot 30^{\circ}=\sqrt{3}$.

We provide one exercise for the reader to practice with right-triangle trigonometric functions. In triangle $A B C$ (see Figure 1.4), $\angle B C A=90^{\circ}$, and D is the foot of the perpendicular line segment from C to segment $A B$. Given that $|A B|=x$ and $\angle A=\theta$, express all the lengths of the segments in Figure 1.4 in terms of x and θ.

Figure 1.4.

Think Within the Box

For two angles α (Greek "alpha") and β (Greek "beta") with $0^{\circ}<\alpha, \beta, \alpha+\beta<$ 90°, it is not difficult to note that the trigonometric functions do not satisfy the additive distributive law; that is, identities such as $\sin (\alpha+\beta)=\sin \alpha+\sin \beta$ and $\cos (\alpha+\beta)=\cos \alpha+\cos \beta$ are not true. For example, setting $\alpha=\beta=30^{\circ}$, we have $\cos (\alpha+\beta)=\cos 60^{\circ}=\frac{1}{2}$, which is not equal to $\cos \alpha+\cos \beta=2 \cos 30^{\circ}=\sqrt{3}$. Naturally, we might ask ourselves questions such as how $\sin \alpha, \sin \beta$, and $\sin (\alpha+\beta)$ relate to one another.

Consider the diagram of Figure 1.5. Let $D E F$ be a right triangle with $\angle D E F=$ $90^{\circ}, \angle F D E=\beta$, and $|D F|=1$ inscribed in the rectangle $A B C D$. (This can always be done in the following way. Construct line ℓ_{1} passing through D outside of triangle $D E F$ such that lines ℓ_{1} and $D E$ form an acute angle congruent to α. Construct line ℓ_{2} passing through D and perpendicular to line ℓ_{1}. Then A is the foot of the perpendicular from E to line ℓ_{1}, and C the foot of the perpendicular from F to ℓ_{2}. Point B is the intersection of lines $A E$ and $C F$.)

Figure 1.5.
We compute the lengths of the segments inside this rectangle. In triangle $D E F$, we have $|D E|=|D F| \cdot \cos \beta=\cos \beta$ and $|E F|=|D F| \cdot \sin \beta=\sin \beta$. In triangle $A D E,|A D|=|D E| \cdot \cos \alpha=\cos \alpha \cos \beta$ and $|A E|=|D E| \cdot \sin \alpha=\sin \alpha \cos \beta$. Because $\angle D E F=90^{\circ}$, it follows that $\angle A E D+\angle B E F=90^{\circ}=\angle A E D+\angle A D E$, and so $\angle B E F=\angle A D E=\alpha$. (Alternatively, one may observe that right triangles $A D E$ and $B E F$ are similar to each other.) In triangle $B E F$, we have $|B E|=$ $|E F| \cdot \cos \alpha=\cos \alpha \sin \beta$ and $|B F|=|E F| \cdot \sin \alpha=\sin \alpha \sin \beta$. Since $A D \| B C$, $\angle D F C=\angle A D F=\alpha+\beta$. In right triangle $C D F,|C D|=|D F| \cdot \sin (\alpha+\beta)=$ $\sin (\alpha+\beta)$ and $|C F|=|D F| \cdot \cos (\alpha+\beta)=\cos (\alpha+\beta)$.

From the above, we conclude that

$$
\cos \alpha \cos \beta=|A D|=|B C|=|B F|+|F C|=\sin \alpha \sin \beta+\cos (\alpha+\beta),
$$

implying that

$$
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta
$$

Similarly, we have

$$
\sin (\alpha+\beta)=|C D|=|A B|=|A E|+|E B|=\sin \alpha \cos \beta+\cos \alpha \sin \beta ;
$$

that is,

$$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta
$$

By the definition of the tangent function, we obtain

$$
\begin{aligned}
\tan (\alpha+\beta) & =\frac{\sin (\alpha+\beta)}{\cos (\alpha+\beta)}=\frac{\sin \alpha \cos \beta+\cos \alpha \sin \beta}{\cos \alpha \cos \beta-\sin \alpha \sin \beta} \\
& =\frac{\frac{\sin \alpha}{\cos \alpha}+\frac{\sin \beta}{\cos \beta}}{1-\frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}}=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} .
\end{aligned}
$$

We have thus proven the addition formulas for the sine, cosine, and tangent functions for angles in a restricted interval. In a similar way, we can develop an addition formula for the cotangent function. We leave it as an exercise.

