Polynomials Pre-Calculus RH

Exercise I Let P(x) be a linear polynomial with P(6) - P(2) = 12. What is P(12) - P(2)?

(A) 12 (B) 18 (C) 24 (D) 30 (E) 36

Exercise 2 Let $x_1 \neq x_2$ be such that $3x_1^2 - hx_1 = b$ and $3x_2^2 - hx_2 = b$. What is $x_1 + x_2$?

(A) $-\frac{h}{3}$ (B) $\frac{h}{3}$ (C) $\frac{b}{3}$ (D) 2b (E) $-\frac{b}{3}$

Exercise 3 What is the remainder when $x^{51} + 51$ is divided by x + 1? (A) 0 (B) 1 (C) 49 (D) 50 (E) 51

Exercise 4 What is the maximum number of points of intersection of the graphs of two different fourth-degree polynomial functions y = P(x) and y = Q(x), each with leading coefficient 1?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 8

Exercise 5 The parabola with equation $y(x) = ax^2 + bx + c$ and vertex (h, k) is reflected about the line y = k. This results in the parabola with equation $y_r(x) = dx^2 + ex + f$. Which of the following equals a + b + c + d + e + f?

(A) 2b (B) 2c (C) 2a + 2b (D) 2h (E) 2k

Exercise 6 Let P(x) be a polynomial which when divided by x - 19 has the remainder 99, and when divided by x - 99 has the remainder 19. What is the remainder when P(x) is divided by (x - 19)(x - 99)?

(A)
$$-x + 80$$
 (B) $x + 80$ (C) $-x + 118$ (D) $x + 118$ (E) 0

Exercise 7 The polynomial $P(x) = x^3 + ax^2 + bx + c$ has the property that the average of its zeros, the product of its zeros, and the sum of its coefficients are all equal. The y-intercept of the graph of y = P(x) is 2. What is b?

(A) -11 (B) -10 (C) -9 (D) 1 (E) 5

Exercise 8 Suppose that $P(x/3) = x^2 + x + 1$. What is the sum of all values of x for which P(3x) = 7?

(A) $-\frac{1}{3}$ (B) $-\frac{1}{9}$ (C) 0 (D) $\frac{5}{9}$ (E) $\frac{5}{3}$

Exercise 9 For how many values of the coefficient *a* do the equations

$$0 = x^2 + ax + 1$$
 and $0 = x^2 - x - a$

have a common real solution?

(A) 0 (B) 1 (C) 2 (D) 3 (E) infinitely many

Exercise 10 The solutions of the equation $x^2 + px + q = 0$ are the cubes of the solutions of the equation $x^2 + mx + n = 0$. Which of the following must be true?

(A)
$$p = m^3 + 3mn$$
 (B) $p = m^3 - 3mn$ (C) $p = 3mn - m^3$
(D) $p + q = m^3$ (E) $\left(\frac{m}{n}\right)^3 = \frac{p}{q}$