Polynomials
Pre-Calculus RH

Exercise I Let $P(x)$ be a linear polynomial with $P(6)-P(2)=12$. What is $P(12)-P(2)$?
(A) 12
(B) 18
(C) 24
(D) 30
(E) 36

Exercise 2 Let $x_{1} \neq x_{2}$ be such that $3 x_{1}^{2}-h x_{1}=b$ and $3 x_{2}^{2}-h x_{2}=b$. What is $x_{1}+x_{2}$?
(A) $-\frac{h}{3}$
(B) $\frac{h}{3}$
(C) $\frac{b}{3}$
(D) $2 b$
(E) $-\frac{b}{3}$

Exercise 3 What is the remainder when $x^{51}+51$ is divided by $x+1$?
(A) 0
(B) 1
(C) 49
(D) 50
(E) 51

Exercise 4 What is the maximum number of points of intersection of the graphs of two different fourth-degree polynomial functions $y=P(x)$ and $y=Q(x)$, each with leading coefficient 1 ?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 8

Exercise 5 The parabola with equation $y(x)=a x^{2}+b x+c$ and vertex (h, k) is reflected about the line $y=k$. This results in the parabola with equation $y_{r}(x)=d x^{2}+e x+f$. Which of the following equals $a+b+c+$ $d+e+f$?
(A) $2 b$
(B) $2 c$
(C) $2 a+2 b$
(D) $2 h$
(E) $2 k$

Exercise 6 Let $P(x)$ be a polynomial which when divided by $x-19$ has the remainder 99 , and when divided by $x-99$ has the remainder 19. What is the remainder when $P(x)$ is divided by $(x-19)(x-99)$?
(A) $-x+80$
(B) $x+80$
(C) $-x+118$
(D) $x+118$
(E) 0

Exercise 7 The polynomial $P(x)=x^{3}+a x^{2}+b x+c$ has the property that the average of its zeros, the product of its zeros, and the sum of its coefficients are all equal. The y-intercept of the graph of $y=P(x)$ is 2 . What is b ?
(A) -11
(B) -10
(C) -9
(D) 1
(E) 5

Exercise 8 Suppose that $P(x / 3)=x^{2}+x+1$. What is the sum of all values of x for which $P(3 x)=7$?
(A) $-\frac{1}{3}$
(B) $-\frac{1}{9}$
(C) 0
(D) $\frac{5}{9}$
(E) $\frac{5}{3}$

Exercise 9 For how many values of the coefficient a do the equations

$$
0=x^{2}+a x+1 \quad \text { and } \quad 0=x^{2}-x-a
$$

have a common real solution?
(A) 0
(B) 1
(C) 2
(D) 3
(E) infinitely many

Exercise 10 The solutions of the equation $x^{2}+p x+q=0$ are the cubes of the solutions of the equation $x^{2}+m x+n=0$. Which of the following must be true?
(A) $p=m^{3}+3 m n$
(B) $p=m^{3}-3 m n$
(C) $p=3 m n-m^{3}$
(D) $p+q=m^{3}$
(E) $\left(\frac{m}{n}\right)^{3}=\frac{p}{q}$

