More practices on radicals Precalculus RH

- 10. If $\alpha < b$, find the ordered pair of positive integers (α,b) that satisfies $\sqrt{10 + \sqrt{84}} = \sqrt{\alpha} + \sqrt{b} .$
- 16. If $\alpha > 0$, b > 0, $\alpha \neq b$, and $\frac{\alpha\sqrt{b} + b\sqrt{a}}{\alpha\sqrt{b} b\sqrt{a}} \frac{\alpha\sqrt{b} b\sqrt{a}}{\alpha\sqrt{b} + b\sqrt{a}} = \sqrt{ab}$, write an equation expressing α explicitly in terms of b.
- Find all ordered triples of real numbers (x,y,z) that satisfy (32%) $\sqrt{x-y+z} = \sqrt{x} \sqrt{y} + \sqrt{z},$ x+y+z=8, and x-y+z=4.
- The expression $\sqrt{10 + \sqrt{10 + 10 + 10 + 10}}$, where the dots indicate an infinite repetition of the indicated pattern of operations, can be expressed in the form $\frac{\alpha + \sqrt{b}}{c}$, where α , b, and c are integers, no two of which have a common prime factor. Find the ordered triple (α, b, c) .
- 26. If $\alpha = \sqrt{.16}$, $b = \sqrt[3]{.0639}$, $c = \sqrt[6]{.0041}$, and $d = (.2)^2$, arrange (25%) α , b, c, and d in increasing order.