Logs Pre-Calc RH

Competition level

Exercise I Suppose that

 $\log_2(\log_3(\log_5(\log_7 N))) = 11.$

How many different prime numbers are factors of N?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 7

Exercise 2 Suppose that

$$\log_2(\log_2(\log_2 x)) = 2.$$

How many digits are in the base-10 representation for x?

(A) 5 (B) 7 (C) 9 (D) 11 (E) 13

Exercise 3 How many positive integers b have the property that $\log_b 729$ is also a positive integer?

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

Exercise 4 Let $f(n) = \log_{2002} n^2$ for all positive integers *n*. Define

$$N = f(11) + f(13) + f(14).$$

Which of the following relations is true?

(A) N > 1 (B) N = 1 (C) 1 < N < 2 (D) N = 2(E) N > 2 **Exercise 5** For some real numbers *a* and *b*, the equation

$$8x^3 + 4ax^2 + 2bx + a = 0$$

has three distinct positive roots, and the sum of the base-2 logarithms of the roots is 5. What is the value of a?

(A) -256 (B) -64 (C) -8 (D) 64 (E) 256

Exercise 6 For any positive integer *n*, define

.

$$f(n) = \begin{cases} \log_8 n, & \text{if } \log_8 n \text{ is rational,} \\ 0, & \text{otherwise.} \end{cases}$$

What is
$$\sum_{n=1}^{1997} f(n)$$
?
(A) $\log_8 2047$ (B) 6 (C) $\frac{55}{3}$ (D) $\frac{58}{3}$ (E) 585

Exercise 7 What is the value of the expression

$$N = \frac{1}{\log_2 100!} + \frac{1}{\log_3 100!} + \frac{1}{\log_4 100!} + \dots + \frac{1}{\log_{100} 100!}?$$
(A) 0.01 (B) 0.1 (C) 1 (D) 2 (E) 10

Exercise 8 The graph, G, of $y = \log_{10} x$ is rotated 90° counter-clockwise about the origin to obtain a new graph, G'. Which of the following is an equation for G'?

(A)
$$y = \log_{10}\left(\frac{x+90}{9}\right)$$
 (B) $y = \log_x 10$ (C) $y = \frac{1}{x+1}$
(D) $y = 10^{-x}$ (E) $y = 10^x$

Exercise 9 What is the value of the sum

$$S = \log_{10}(\tan 1^\circ) + \log_{10}(\tan 2^\circ) + \dots + \log_{10}(\tan 88^\circ) + \log_{10}(\tan 89^\circ)?$$

(A) 0 (B)
$$\frac{1}{2}\log_{10}\left(\frac{1}{2}\sqrt{3}\right)$$
 (C) $\frac{1}{2}\log_{10}2$ (D) $\frac{1}{2}\log_{10}3$

(E) 1

Exercise 10 Let $a \ge b > 1$. What is the largest possible value of

$$\log_a \frac{a}{b} + \log_b \frac{b}{a}$$
?
(A) -2 (B) 0 (C) 2 (D) 3 (E) 4