Functions Pre Calc RH

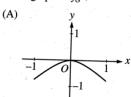
From SAT II,

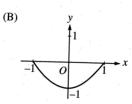
- 5. If $f(x) = 3 \ln(x) 1$ and $g(x) = e^x$, then f(g(5)) =
 - (A) 6.83
 - (B) 12

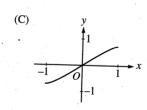
 - (C) 14 (D) 45.98
 - (E) 568.17
- 7. If $f(x) = \sqrt{0.3x^2 x}$ and $g(x) = \frac{x+1}{x-1}$, then $g(f(10)) = \frac{x+1}{x-1}$
 - (A) 0.2 (B) 1.2 (C) 1.6 (D) 4.5 (E) 5.5
- 10. If $f(g(x)) = \frac{2\sqrt{x^2 + 1} 1}{\sqrt{x^2 + 1} + 1}$ and $f(x) = \frac{2x 1}{x + 1}$

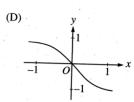
then g(x) =

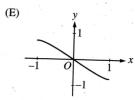
- (A) \sqrt{x}
- (B) $\sqrt{x^2 + 1}$
- (C) x
- (D) x^2
- (E) $x^2 + 1$
- 14. If f(x) = 3x + 5 and f(g(1)) = 11, which of the following could be g(x)?
 - (A) 7x 5(B) 5x + 7
 - (C) 5x 7
 - (D) 5x + 3
- 20. If a and b are in the domain of a function f and f(a) < f(b), which of the following must be true?
 - (A) a = 0 or b = 0
 - (B) a < b
 - (C) a > b
 - (D) $a \neq b$
 - (E) a = b


- 24. What is the domain of $f(x) = \sqrt[3]{-x^2 + 13}$?
 - (A) x > 0
 - (B) x > 2.35
 - (C) -2.35 < x < 2.35
 - (D) -3.61 < x < 3.61
 - (E) All real numbers
- 28. If f(-x) = f(x) for all real numbers x and if (3, 8) is a point on the graph of f, which of the following points must also be on the graph of f?
 - (A) (-8, -3)
 - (B) (-3, -8)
 - (C) (-3, 8)
 - (D) (3, -8)
 - (E) (8,3)
- 29. If f(2x + 1) = 2x 1 for all real numbers x, then
 - (A) -x + 1
 - (B) x 1
 - (C) x 2
 - (D) 2x 1
 - (E) $\frac{1}{2}x 1$
- 31. What is the range of the function defined by


$$f(x) = \begin{cases} \frac{1}{x^3}, & x > 2 \\ 2x - 1, & x \le 2 \end{cases}$$
?


- (A) $y > 2^{\frac{1}{3}}$
- (B) $y \le 3$
- (C) $2^{\frac{1}{3}} < y < 3$
- (D) $y \ge 3$
- (E) All real numbers


- 32. If f(x) = |5 3x|, then f(2) =
 - (A) f(-2)
 - (B) f(-1)
 - (C) f(1)
 - (D) $f\left(\frac{4}{3}\right)$
- 38. If $f(x) = 5\sqrt{2x}$, what is the value of $f^{-1}(10)$?
 - (A) 0.04
 - (B) 0.89
 - (C) 2.00
 - (D) 2.23
 - (E) 22.36


- 41. Portions of the graphs of f and g are shown above. Which of the following could be a portion of the graph of fg?

- 46. Suppose the graph of $f(x) = -x^2$ is translated 3 units left and 1 unit up. If the resulting graph represents g(x), what is the value of g(-1.6)?

 - (A) 2.96 (B) -0.96 (C) -1.56 (D) -1.96 (E) -2.56

From competitions,

Suppose that for all x > 0 we have $f(2x) = \frac{2}{2 + x}$. What is Exercise 1 2f(x)?

(A)
$$\frac{2}{1+x}$$

(B)
$$\frac{2}{2+x}$$

(C)
$$\frac{4}{1+x}$$

$$(D) \frac{4}{2+x}$$

(A)
$$\frac{2}{1+x}$$
 (B) $\frac{2}{2+x}$ (C) $\frac{4}{1+x}$ (D) $\frac{4}{2+x}$ (E) $\frac{8}{4+x}$

The function f is defined for positive integers n by:

$$f(n) = \begin{cases} n+3, & \text{if } n \text{ is odd,} \\ n/2, & \text{if } n \text{ is even.} \end{cases}$$

Suppose k is an odd integer and that f(f(f(k))) = 27. What is the sum of the digits of k?

(A) 3

(B) 6

(C) 9

(D) 12

(E) 15

Exercise 3 Let $f(x) = ax^7 + bx^3 + cx - 5$, where a, b, and c are constants. Suppose that f(-7) = 7. What is f(7)?

(A) -17

(B) -7 **(C)** 14 **(D)** 17

(E) 21

Exercise 4 The function f satisfies f(2+x) = f(2-x) for all real numbers x. Moreover, f(x) = 0 has exactly four distinct real roots. What is the sum of these roots?

 $(\mathbf{A}) 0$

(B) 2

(C) 4

(D) 6

(E) 8

Exercise 5 Suppose that the function f, for $x \neq -3/2$, is defined by

$$f(x) = \frac{cx}{2x+3},$$

and that f(f(x)) = x for all real numbers in its domain. What is the value of *c*?

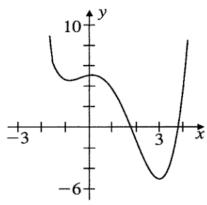
(A) -3 (B) $-\frac{3}{2}$ (C) $\frac{3}{2}$ (D) 3 (E) 5

Exercise 6 Let $f(x^2 + 1) = x^4 + 5x^2 + 3$. What is $f(x^2 - 1)$? **(A)** $x^4 + 5x^2 + 1$ **(B)** $x^4 + x^2 - 3$ **(C)** $x^4 - 3x^2 + 1$

(A)
$$x^4 + 5x^2 + 1$$

(B)
$$x^4 + x^2 - 3$$

(C)
$$x^4 - 3x^2 + 1$$


(D)
$$x^4 - 5x^2 + 1$$
 (E) $x^4 + x^2 + 3$

(E)
$$x^4 + x^2 + 3$$

Exercise 7 Suppose that $x^2 + y^2 = 14x + 6y + 6$. What is the maximum value of 3x + 4y?

Exercise 8 What is the number of real solutions of the equation $\frac{x}{100}$ = $\sin x$?

Exercise 9 The graph shows a portion of the curve defined by a quartic polynomial of the form $P(x) = x^4 + ax^3 + bx^2 + cx + d$. Which of the following is the smallest?

- (B) The product of the zeros of P. (A) P(-1)
- (C) The product of the non-real zeros of P.
- (**D**) The sum of the coefficients of P.
- (E) The sum of the real zeros of P.

Exercise 10 Let $f(x) = x^2 + 6x + 1$, and let R denote the set of points (x, y) in the coordinate plane such that

$$f(x) + f(y) \le 0$$
 and $f(x) - f(y) \le 0$.

Which of the numbers is closest to the area of *R*?

(A) 21

(B) 22

(C) 23

(D) 24

(E) 25