Show your work for full credits.
Part I-Calculator (6 pts each)

1. If $\ln a=2.11$, what is the value of $\ln \left(a e^{2}\right)$?
2. Let $3.12^{a}=2.13^{b}$. what is the value of $\frac{a}{b}$?
3. In $\triangle A B C, A B=10, B C=10, m \angle B=40^{\circ}$. Find $A C$.

Part II - No Calculator (10 pts each)
Name: \qquad
4. Prove *you may work on only one side of the equation.

$$
\frac{\tan a+\tan b}{\cot a+\cot b}=(\tan a)(\tan b)
$$

5. Simplify the given expression in terms of A.

$$
\frac{1}{x^{2} \sqrt{9+x^{2}}}, \quad x=3 \tan A
$$

6. Let $n=\log _{2} 3 \cdot \log _{3} 4 \cdot \log _{4} 5 \cdots \log _{2019} 2020$. What is the least integer greater than n ?
7. What is the value of the given summation?

$$
\sum_{i=1}^{10} \sum_{j=1}^{10}(i j)
$$

8. Find the value of x. Then, find the area of the triangle.

9. Write the first expression in terms of the second, for A in the given quadrant.

$$
\csc ^{2} A \cos ^{2} A, \quad \sin A ; \quad A \text { in any quadrant }
$$

10. Find the exact value of the given expressions.
a. $\tan \left(-240^{\circ}\right)$
b. $\sec \frac{16 \pi}{3}$
11. A point P moving in simple harmonic motion completes 8 cycles every second. If the amplitude of the motion is 40 cm , find an equation that describes the motion of P as a function of time. Assume the point P is at its maximum displacement when $t=0$.
