Problem 5
How many subsets of $\{2,3,4,5,6,7,8,9\}$ contain at least one prime number?
(A) 128
(B) 192
(C) 224
(D) 240
(E) 256

$$
\{2,3,5,7\}
$$

$$
\{4,6,8,9\}
$$

$2^{4}=16$

$$
\begin{array}{ll}
4 C_{0}=1 & \sum_{i=0}^{n}{ }_{n} C_{i}
\end{array}
$$

ex)

$$
\begin{aligned}
& \{2\} \cup\{4,6\} \\
& \{24,6\}
\end{aligned}
$$

$$
15 \cdot 16=240
$$

Problem 6
.25
Suppose S cans of soda can be purchased from a vending machine for Q auarters. Which of the following expressions describes the number of fans of soda that can be purchased for D dollars, where 1 dollar is worth 4 quarters?
(A) $\frac{4 D Q}{S}$
(B) $\frac{4 D S}{Q}$
(C) $\frac{4 Q}{D S}$
(D) $\frac{D Q}{4 S}$
(E) $\frac{D S}{4 Q}$

Problem 8
Ine segment $\overline{A B}$ is a diameter of a circle with $A B=24$. Point C, not equal to A or B, lies on the circle. As point C moves around the circle, he centroid (center of mass) of $\triangle A B C$ traces out a closed curve missing two points. To the nearest positive integer, what is the area of the egion bounded by this curve?
(A) 25
(B) 38
C) 50
(D) 63
(E) 75
$\frac{352}{7}$

Problem 7
What is the value of
$\log _{3} 7 \cdot \log _{\text {¢ }} 9 \cdot \log _{7} 11 \cdot \log _{9} 13 \cdots \log _{21} 25 \cdot \log _{23} 27 ?$
(A) 3
(B) $3 \log _{7} 23$
(D) 9
(E) 10

Problem 9

What is

$$
\sum_{i=1}^{100} \sum_{j=1}^{100}(i+j) ?
$$

(A) 100,100
(B) 500,500
(C) 505,000
(D) $1,001,000$
(E) $1,010,000$

