


Exercise 8 The graph, G, of $y = \log_{10} x$ is rotated 90° counter-clockwise about the origin to obtain a new graph, G'. Which of the following is an equation for G'?

(A)
$$y = \log_{10} \left(\frac{x+90}{9}\right)$$
 (B) $y = \log_{x} 10$ (C) $y = \frac{1}{x+1}$
(D) $y = 10^{-x}$ (E) $y = 10^{x}$
(A) $y = \sqrt{10^{-x}}$ (E) $y = 10^{x}$
(A) $y = \sqrt{10^{-x}}$ (B) $y = 10^{x}$
(A) $y = \sqrt{10^{-x}}$ (C) $y = \frac{1}{x+1}$
(A) $y = \sqrt{10^{-x}}$ (C) $y = \sqrt{10^{-x}}$ (C) $y = \frac{1}{x+1}$
(A) $y = \sqrt{10^{-x}}$ (C) $y = \sqrt{$

Exercise 10 Let
$$a \ge b > 1$$
. What is the largest possible value of

$$\log_{a} \frac{a}{b} + \log_{b} \frac{b}{a}?$$
(A) -2 (B) (C) 2 (D) 3 (E) 4

$$\begin{pmatrix} \log_{a} n - \log_{a} b \end{pmatrix} + (\log_{b} b - \log_{b} h) \\ (1 - \log_{a} h) + (1 - \log_{b} h) \\ (1 - \log_{a} h) + (1 - \log_{b} h) \\ (1 - \log_{a} h) + (1 - \log_{b} h) \\ (1 - \log_{a} h) + (1 - \log_{b} h) \\ (1 - \log_{a} h) + (1 - \log_{b} h) \\ (1 - \log_{a} h) + (1 - \log_{b} h) \\ (1 - \log_{a} h) + (1 - \log_{b} h) \\ (1 - \log_{a} h) + (1 - \log_{b} h) \\ (1 - \log_{a} h) + (1 - \log_{b} h) \\ (1 - \log_{b} h) \\ (1 - \log_{b} h) + (1 - \log_{b} h) \\ (1 - \log_{b}$$