Exercise 4 Let $f(n) = \log_{2002} n^2$ for all positive integers n. Define

$$N = f(11) + f(13) + f(14).$$
2 (00) 2002 | 13-14

Which of the following relations is true?

(A)
$$N > 1$$

(B)
$$N = 1$$

(A)
$$N > 1$$
 (B) $N = 1$ (C) $1 < N < 2$ (D) $N = 1$

(E)
$$N > 2$$

Exercise 5 For some real numbers a and b, the equation

$$8x^3 + 4ax^2 + 2bx + a = 0$$

has three distinct positive roots, and the sum of the base-2 logarithms of the roots is 5. What is the value of a?

(A)
$$-256$$
 (B) -64 **(C)** -8 **(D)** 64

(B)
$$-64$$

$$(C) -8$$

$$ax^3 + bx^2 + cx + d = 0$$

$$L^{1}L^{2}L^{3} = -\frac{1}{6}$$
 $L^{1}L^{2}L^{3} = -\frac{1}{6}$
 $L^{1}L^{2}L^{3} = -\frac{1}{6}$

Exercise 6 For any positive integer n, define

$$f(n) = \begin{cases} \log_8 n, & \text{if } \log_8 n \text{ is rational,} \\ 0, & \text{otherwise.} \end{cases}$$

What is
$$\sum_{n=1}^{1997} f(n)$$
?

(A)
$$\log_8 2047$$
 (B) 6 (C) $\frac{55}{3}$ (D) $\frac{58}{3}$ (E) 585

Exercise 7 What is the value of the expression

$$N = \frac{1}{\log_2 100!} + \frac{1}{\log_3 100!} + \frac{1}{\log_4 100!} + \dots + \frac{1}{\log_{100} 100!}?$$

(A) 0.01

(B) 0.1 **(C)** 1

(D) 2

(E) 10

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \binom{n+1}{2}$$