
Nover

47.
$$r(x) = \frac{x^2 - 2x + 1}{x^2 + 2x + 1}$$
 $x - int$:

 $(y = 0) \rightarrow x^2 - 2x + 1 = 0$
 $x = (x - 1) = 1$
 $x - 1 = 1$
 $x - 2 = 1$
 $x - 3 + 2 = 1$
 $x - 4 = 1$
 $x -$

69.
$$y = \frac{2x^2 - 5x}{2x + 3}$$
 $x - int = 0, \frac{5}{2}$
 $y - int = 0$
 $y = \frac{2x^2 - 5x}{2x + 3}$
 $y - int = 0$
 $y = \frac{2x^2 - 5x}{2x + 3}$
 $y - int = 0$
 $y = \frac{2x^2 - 5x}{2x + 3}$
 $y - int = 0$
 $y = \frac{2x^2 - 5x}{2x + 3}$
 $y - int = 0$
 $y = \frac{2x^2 - 5x}{2x + 3}$
 $y - int = 0$
 $y = \frac{2x^2 - 5x}{2x + 3}$
 $y = \frac{2x - 5}{2x + 3}$

