Exercise 4 What is the maximum number of points of intersection of the graphs of two different fourth-degree polynomial functions $y=P(x)$ and $y=Q(x)$, each with leading coefficient 1 ?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 8

$$
\begin{aligned}
& P(x)=x^{4}+a x^{3}+b x^{2}+c x+d \ \\
& Q(x)=x^{4}+e x^{3}+f x^{2}+g x+h \\
& x^{4}+a x^{3}+b x^{4}+=x^{4}+e x^{3} \\
& a=0 \\
& a-e x^{3}+\cdots x^{3}+f x^{2} \cdots=0
\end{aligned}
$$

Exercise 5 The parabola with equation $y(x)=a x^{2}+b x+c$ and vertex (h, k) is reflected about the line $y=k$. This results in the parabola with equation $y_{r}(x)=d x^{2}+e x+f$. Which of the following equals $a+b+c+$ $y+\gamma+f$?
(A) $2 b$
(B) $2 c$
(C) $2 a+2 b$
(D) $2 h$

$$
\begin{array}{rl}
(n, k) / y=a x^{2}+b x+c & f+c \\
=2 k \\
y=k & a=-d \\
y & =d x^{2}+e x+f \\
& \frac{-b}{2 a}=\frac{-e}{2 d} \\
\frac{-b}{k k} & =\frac{+e}{k(+4)}
\end{array}
$$

Exercise 5 The parabola with equation $y(x)=a x^{2}+b x+c$ and vertex (h, k) is reflected about the line $y=k$. This results in the parabola with equation $y_{r}(x)=d x^{2}+e x+f$. Which of the following equals $a+b+c+$ $d+e+f$?
(A) $2 b$
(B) $2 c$
(C) $2 a+2 b$
(D) $2 h$
(E) $2 k \varphi(1)$

Exercise 6 Let $P(x)$ be a polynomial which when divided by $x-19$ has the remainder 99 , and when divided by $x-99$ has the remainder 19. What is the remainder when $P(x)$ is divided by $(x-19)(x-99)$?
(A) $-x+80$
(B) $x+80$
(C) $-x+118$
(D) $x+118$
(E) 0

$$
\left.\begin{array}{r}
P(19)=99 \\
P(99)=19
\end{array}\right\} \begin{array}{r}
P(x)=D(x) Q(x)+R(x) \\
=(x-19)(x-9 a) Q(x)+m x+b \\
p(19)=0+19 m+b=99 \\
P(19)=\begin{array}{r}
99 m+b=19 \\
b=118 m=80
\end{array} \\
=-1
\end{array}
$$

Exercise 7 The polynomial $P(x)=x^{3}+a x^{2}+b x+c$ has the property that the average of its zeros, the product of its zeros, and the sum of its coefficients are all equal. The y-intercept of the graph of $y=P(x)$ i 2 What is b ?
(A) -11
(B) -10
(C) -9
(D) 1
(E) 5

$$
\begin{array}{r}
-\frac{a}{3}=\frac{-2}{1}=1+a+b+c \\
-2=1+1
\end{array}
$$

$$
a=b
$$

$$
-2=1+6+b+2
$$

$$
-11=b
$$

$$
\begin{aligned}
& \quad+\quad+\quad- \\
& a x^{3}+b x^{2}+c x+d=0 \\
& P=\frac{-d}{a}
\end{aligned}
$$

