Let $f(x)=\frac{2 x-1}{4^{x}+\sin x}, \frac{f^{-1}(f(x))=(x) \text {. }}{\text {. }}$
If $f^{-1}(0)=K$. Find K.

$$
f(x)=x
$$ identity. inverse under composition.

$$
\begin{aligned}
& 0=\frac{2 x-1}{4^{x}+\sin x} \rightarrow 0=2 k-1 \\
& \underset{\substack{\downarrow \\
a}}{\substack{f \\
(a, b)}} \begin{array}{l}
f^{\prime} \\
(k, 0) \leftarrow(b, a) \\
(k, k)
\end{array}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\sin ^{-1} x \\
\arcsin x \\
\frac{1}{\sin x}=\csc x
\end{array}\right.
$$

$$
f(x)=(x+1)^{2}
$$

1) Find inverse of $f(x), g(x)$
2) to make $g(x)$ as a function of x

How should you restrict the domain of $f(x)$?
a) $y=(x+1)^{2} \xrightarrow{\operatorname{inv}} x=(y+1)^{2}$

Lee $f(x)=x^{2}-6 x+5=(x-3)^{2}-4$ $+9-9$
How should the donaln be restricted to make $g(x)$ a function, where $g(f(x))=x$?

