Even

$$
f(-x)=f(x)
$$

$$
f(-x)=f(x)
$$

sym. aby $y=x^{2}$ y-axis
odd $f(x)=-f(-x)$

$$
f(-x)=-f(x)
$$

sym ant $y=x^{3}$ origin
ex.) $f(x)=-3 x^{4}+5 x^{2}-7$

$$
f(x)=4 x^{7}+3 x^{3}-x
$$

Even, odd, or neither
67. $f(x)=1-\sqrt[3]{x}$

$$
\begin{aligned}
& f(-x)=1-\sqrt[3]{-x}=1+\sqrt[3]{x} x^{f(x)} \\
& x-f(x) \\
& \therefore \text { Nether. }
\end{aligned}
$$

* \because Let $g(x)=g(-x)$

$$
h(x)=-h(-x)
$$

Let $f(x)=g(x)+h(x)$
Is $f(x)$ Even, odd, or neither?

$$
\begin{aligned}
& f(-x)=g(-x)+h(-x) \\
&=g(x)-h(x) \neq f(x) \\
& *-f(x)
\end{aligned}
$$

Neither

$$
\begin{gathered}
f(x)=-f(-x) \\
y=f(x) \xrightarrow{r_{x-a x i s}} y=-f(x) \\
y=-f(-x)=r_{y \text {-axis }} \\
r_{(0,0)}=\Gamma_{y \text {-axis }}\left(\Gamma_{x \text {-axis }}\right)
\end{gathered}
$$

69. The graphs of $f(x)=x^{2}-4$ and $g(x)=\left|x^{2}-4\right|$ are shown. Explain how the graph of g is obtained from the graph of f.

$f(x)=x^{2}-4$
$g(x)=\left|x^{2}-4\right|$

70. The graph of g is given. Use it to graph each of the following functions.
(a) $y=g(2 x)$
(b) $y=g\left(\frac{1}{2} x\right)$

a: horizontal compression by a factor of 2 or horizontal scaling by a factor of $1 / 2$
*** horizontal compression by a factor of $1 / 2=$ horizontal stretch by a factor of $2^{* * *}$
