31. Verify that Stokes' Theorem is true for the vector field $\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}$, where S is the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the $x y$-plane and S has upward orientation.

Since curl $\mathbf{F}=\mathbf{0}, \iint_{S}(\operatorname{curl} \mathbf{F}) \cdot d \mathbf{S}=0$. We parametrize $C: \mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}, 0 \leq t \leq 2 \pi$ and
$\left.\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi}\left(-\cos ^{2} t \sin t+\sin ^{2} t \cos t\right) d t=\frac{1}{3} \cos ^{3} t+\frac{1}{3} \sin ^{3} t\right]_{0}^{2 \pi}=0$.
33. Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=x y \mathbf{i}+y z \mathbf{j}+z x \mathbf{k}$, and C is the triangle with vertices $(1,0,0),(0,1,0)$, and $(0,0,1)$, oriented counterclockwise as viewed from above.

The surface is given by $x+y+z=1$ or $z=1-x-y, 0 \leq x \leq 1,0 \leq y \leq 1-x$ and $\mathbf{r}_{x} \times \mathbf{r}_{y}=\mathbf{i}+\mathbf{j}+\mathbf{k}$. Then $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}(-y \mathbf{i}-z \mathbf{j}-x \mathbf{k}) \cdot(\mathbf{i}+\mathbf{j}+\mathbf{k}) d A=\iint_{D}(-1) d A=-($ area of $D)=-\frac{1}{2}$.
35. Verify that the Divergence Theorem is true for the vector field $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, where E is the unit ball $x^{2}+y^{2}+z^{2} \leqslant 1$.

$$
\begin{aligned}
& \iiint_{E} \operatorname{div} \mathbf{F} d V=\iiint_{x^{2}+y^{2}+z^{2} \leq 1} 3 d V=3(\text { volume of sphere })=4 \pi \text {. Then } \\
& \mathbf{F}(\mathbf{r}(\phi, \theta)) \cdot\left(\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right)=\sin ^{3} \phi \cos ^{2} \theta+\sin ^{3} \phi \sin ^{2} \theta+\sin \phi \cos ^{2} \phi=\sin \phi \text { and } \\
& \iint_{S} \mathbf{F} \cdot d \mathbf{S}=\int_{0}^{2 \pi} \int_{0}^{\pi} \sin \phi d \phi d \theta=(2 \pi)(2)=4 \pi
\end{aligned}
$$

37. Let
$\mathbf{F}(x, y, z)=\left(3 x^{2} y z-3 y\right) \mathbf{i}+\left(x^{3} z-3 x\right) \mathbf{j}+\left(x^{3} y+2 z\right) \mathbf{k}$
Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the curve with initial point $(0,0,2)$ and terminal point $(0,3,0)$ shown in the figure.

Because $\operatorname{curl} \mathbf{F}=\mathbf{0}, \mathbf{F}$ is conservative, and if $f(x, y, z)=x^{3} y z-3 x y+z^{2}$, then $\nabla f=\mathbf{F}$. Hence $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \nabla f \cdot d \mathbf{r}=f(0,3,0)-f(0,0,2)=0-4=-4$

