Exam 21

Show your work for full credits.

Let $f(x, y) = x^2y + xy^2 - xy$

- 1. Find f_x and f_y
- 2. Find f_{xx} , f_{yy} , and f_{xy}
- 3. Find $T_2(x, y)$, the 2nd order Taylor Polynomial, centered at (0, 0)
- 4. Find an equation of a tangent plane at (0, 0)
- 5. Approximate f(0.01, -0.02), using the tangent plane.
- 6. Find $D_u f$, directional derivative of f, at (1, 2) toward (2, 1).
- 7. Find the value of maximum directional derivative of f at (1, 2)
- 8. Find the unit vector which in line of the maximum directional derivative at (1, 2)
- 9. Find local min/max, if any.

10. Let
$$z = e^y \cos x$$
, $y = st$, and $x = \sqrt{s^2 + t^2}$. Find $\frac{\partial z}{\partial t}$
11. Let $xyz = \sin(x + y + 2z)$. Find $\frac{\partial z}{\partial x}$

12. Find the points on the surface $y^2 = 9 + xz$ that are closest to the origin.

13. If the length of the diagonal of a rectangular box must be L, what is the largest possible volume? (Must be solved by using 2nd derivative test in Multivariable Calculus)