Show your work for full credits.
Let $f(x, y)=x^{2} y+x y^{2}-x y$

1. Find f_{x} and f_{y}
2. Find $f_{x x}, f_{y y}$, and $f_{x y}$
3. Find $T_{2}(x, y)$, the $2^{\text {nd }}$ order Taylor Polynomial, centered at $(0,0)$
4. Find an equation of a tangent plane at $(0,0)$
5. Approximate $f(0.01,-0.02)$, using the tangent plane.
6. Find $D_{u} f$, directional derivative of f, at $(1,2)$ toward $(2,1)$.
7. Find the value of maximum directional derivative of f at $(1,2)$
8. Find the unit vector which in line of the maximum directional derivative at (1, 2)
9. Find local $\mathrm{min} / \mathrm{max}$, if any.
10. Let $z=e^{y} \cos x, y=s t$, and $x=\sqrt{s^{2}+t^{2}}$. Find $\frac{\partial z}{\partial t}$
11. Let $x y z=\sin (x+y+2 z)$. Find $\frac{\partial z}{\partial x}$
12. Find the points on the surface $y^{2}=9+x z$ that are closest to the origin.
13. If the length of the diagonal of a rectangular box must be L, what is the largest possible volume? (Must be solved by using $2^{\text {nd }}$ derivative test in Multivariable Calculus)
