Exam 12 Multi. Calculus

Show your work for full credits.

- 1. Find an equation of a plane that contains A(2, 3, 1), B(0, 1, -2), and C(4, 0, 1).
- 2. Match the given equations and surfaces

$$A \qquad \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

B
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$C \qquad \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

D
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$$

- 3. Let $r(t) = < 5 \cos t$, $12 \cos t$, $13 \sin t >$ at t = 0.
 - a. Find *T*, unit tangent vector.
 - b. Find *N*, unit normal vector.
 - c. Find *B*, binormal vector.
 - d. Find an equation of the osculating plane.
 - e. Find κ , curvature.
 - f. Find the length of the arc for r(t) when $0 \le t \le \frac{\pi}{2}$.
- 4. Find the tangential and normal component of the acceleration vector. $r(t) = < \cos t$, $\sin t$, t >
- 5. Find the curvature of the curve with parametric equations $x = \int_{0}^{t} \sin\left(\frac{\pi}{2}\theta^{2}\right) d\theta \qquad \qquad y = \int_{0}^{t} \cos\left(\frac{\pi}{2}\theta^{2}\right) d\theta$