$$\lim_{x\to 5} 2x-3 = 7$$

$$\lim_{x\to c} f(x) = f(c)$$

Let f(x) be a function defined on an interval that contains x = a, except possibly at x = a. Then we say that,

$$\lim_{x o a} f(x) = L$$

if for every number arepsilon>0 there is some number $\delta>0$ such that

$$|f(x)-L|<\varepsilon \qquad \text{ whenever } \qquad 0<|x-a|<\delta$$

| im
$$2x-3=7$$
 | $|(2x-3)-7|<5$ | $|2x-10|<5$ | $|2x-10|<5$ | $|2x-5|<5$ | $|x-5|<5$ | $|x$

|
$$|x-5| < S$$
 | $|f(x)-6| < 2$
| Let $S = \frac{E}{2}$ | $|xx-3-6|$
| $|x-5| < S$ | $|xx-3-6|$
| $|x-5| < S$ | $|xx-3-6| < E$
| $|x-4| < E$
| $|x-4| < E$
| $|x-5| < S$

lim
$$5x-1 = 14$$
 $x \to 3$

Prove J

Let $G = \frac{2}{5}$

We know that

 $|x-3| < 5$
 $|x-3| < 5$
 $|x-3| < 55 = 2$
 $|(5x-1)(4) < 2$
 $|x-3| < 5 = 2$