- 15. (a) Find symmetric equations for the line that passes through the point (1, -5, 6) and is parallel to the vector $\langle -1, 2, -3 \rangle$.
 - (b) Find the points in which the required line in part (a) intersects the coordinate planes.

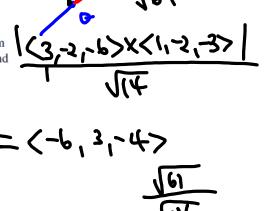
a)
$$r(t) = \langle 1, -5, 6 \rangle + \pm \langle -1, 2, -3 \rangle$$

 $y = -5 + 2 \pm \frac{x-1}{2} = \frac{2}{2} \pm \frac{1}{2}$

on
$$xy - plane = = 0$$

$$\begin{cases} -1, -1, 0 \end{cases}$$

67-68 Use the formula in Exercise 43 in Section 12.4 to find the distance from the point to the given line.


67.
$$(4, 1, -2)$$
; $x = 1 + t$, $y = 3 - 2t$, $z = 4 - 3t$

43. (a) Let P be a point not on the line L that passes through the points Q and R. Show that the distance d from the point Pto the line L is

$$d = \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|}$$

where $\mathbf{a} = \overrightarrow{QR}$ and $\mathbf{b} = \overrightarrow{QP}$.

(b) Use the formula in part (a) to find the distance from the point P(1, 1, 1) to the line through Q(0, 6, 8) and R(-1, 4, 7).

$$V = \left(a \cdot (b \times c) \right)$$

$$A(0,0,0) \quad B_{1}(1 + D)$$

$$B(2,1,5) \quad \text{are neigh. vertices}$$


$$C(-1,-1,0) \quad \text{from } A_{1}$$

$$D(0,1,7) \quad \text{Find } V = P_{1}P_{2}$$

$$AB = b \quad cxd = (-7.7,-1)$$

$$V = \left(b \cdot (cxd) \right) \quad b \cdot (cxd) = 14 + 7 - 5$$

$$= -(2 - V = 12)$$

$$a \cdot b = 0 \rightarrow a = kb$$

$$s(t) = \langle 1, 2, 3 \rangle + t \langle 0, 2, -1 \rangle$$

 $s(t) = \langle 0, 1, -2 \rangle + t \langle 1, 2, 3 \rangle$
 $1 = x = k$ $k = 1$
 $2t + 2 = y = 2k + 1$ $t = \frac{1}{2}$
 $3 - t \Rightarrow x = 3k - 2$ Show