DEFINITION If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the cross product of \mathbf{a} and \mathbf{b} is the vector

$$\mathbf{a} \times \mathbf{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$$

$$< a_1 a_2 a_3 >$$
 $< b_1 b_2 b_3 >$
 $= i \begin{vmatrix} a_1 & a_3 \\ b_2 & b_3 \end{vmatrix} - i \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + k \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$

THEOREM If θ is the angle between \mathbf{a} and \mathbf{b} (so $0 \le \theta \le \pi$), then

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$$

ROOF From the definitions of the cross product and length of a vector, we have

$$|\mathbf{a} \times \mathbf{b}|^{2} = (a_{2}b_{3} - a_{3}b_{2})^{2} + (a_{3}b_{1} - a_{1}b_{3})^{2} + (a_{1}b_{2} - a_{2}b_{1})^{2}$$

$$= a_{2}^{2}b_{3}^{2} - 2a_{2}a_{3}b_{2}b_{3} + a_{3}^{2}b_{2}^{2} + a_{3}^{2}b_{1}^{2} - 2a_{1}a_{3}b_{1}b_{3} + a_{1}^{2}b_{3}^{2}$$

$$+ a_{1}^{2}b_{2}^{2} - 2a_{1}a_{2}b_{1}b_{2} + a_{2}^{2}b_{1}^{2}$$

$$= (a_{1}^{2} + a_{2}^{2} + a_{3}^{2})(b_{1}^{2} + b_{2}^{2} + b_{3}^{2}) - (a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3})^{2}$$

$$= |\mathbf{a}|^{2}|\mathbf{b}|^{2} - (\mathbf{a} \cdot \mathbf{b})^{2}$$

$$= |\mathbf{a}|^{2}|\mathbf{b}|^{2} - |\mathbf{a}|^{2}|\mathbf{b}|^{2}\cos^{2}\theta \qquad \text{(by Theorem 12.3.3)}$$

$$= |\mathbf{a}|^{2}|\mathbf{b}|^{2}(1 - \cos^{2}\theta)$$

$$= |\mathbf{a}|^{2}|\mathbf{b}|^{2}\sin^{2}\theta$$

$$|a \times b| = |a||b| \sin \theta$$

$$|a \times b| = 0 \quad \text{if } a ||b| \quad \text{(if } a = kb)$$

$$A_{D} = \frac{1}{2}bh$$

$$= \frac{1}{2}ab\sin C$$

$$A_{D} = \frac{1}{2}ab\cos C$$

$$A_{D$$