


28.	Wha	What is $\lim_{x\to 0} \frac{e^{2x}-1}{\tan x}$?									
	(A)	-1	(B)	0	(C)	1	(D)	2	(E)	The limit does not exist.	

23.
$$\lim_{h \to 0} \frac{1}{h} \ln \left(\frac{2+h}{2} \right)$$
 is
(A) e^2 (B) 1 (C) $\frac{1}{2}$ (D) 0 (E) nonexistent

2. If
$$f(x) = 2x^2 + 1$$
, then $\lim_{x \to 0} \frac{f(x) - f(0)}{x^2}$ is
(A) 0 (B) 1 (C) 2 (D) 4 (E) nonexistent

24. Let f and g be functions that are differentiable for all real numbers, with $g(x) \neq 0$ for $x \neq 0$. If $\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0$ and $\lim_{x \to 0} \frac{f'(x)}{g'(x)}$ exists, then $\lim_{x \to 0} \frac{f(x)}{g(x)}$ is (A) 0 (B) $\frac{f'(x)}{g'(x)}$ (C) $\lim_{x \to 0} \frac{f'(x)}{g'(x)}$ (D) $\frac{f'(x)g(x) - f(x)g'(x)}{(f(x))^2}$ (E) nonexistent

42.	$\lim_{x\to 0}$	$(1+2x)^{\csc x} =$								
	(A)	0	(B)	1	(C)	2	(D)	е	(E)	e ²