Name: _

Teacher: Lee

- 1. The height of a ball Doreen tossed into the air can be modeled by the function $h(x) = -4.9x^2 + 6x + 5$, where x is the time elapsed in seconds, and h(x) is the height in meters. The number 5 in the function represents
 - 1. the initial height of the ball
 - 2. the time at which the ball reaches the ground
 - 3. the time at which the ball was at its highest point
 - 4. the maximum height the ball attained when thrown in the air
- 2. Abigail's and Gina's ages are consecutive integers. Abigail is younger than Gina and Gina's age is represented by *x*. If the difference of the square of Gina's age and eight times Abigail's age is 17, which equation could be used to find Gina's age?

1.
$$(x + 1)^2 - 8x = 17$$

2.
$$(x-1)^2 - 8x = 17$$

3.
$$x^2 - 8(x + 1) = 17$$

4.
$$x^2 - 8(x - 1) = 17$$

- 3. The gas mileage, M, in miles per gallon, for a new hybrid car is modeled by the function $M(s) = -\frac{1}{16}s^2 +$
- 7.5s 150, where s is the speed in miles per hour. What is the best gas mileage that the car achieves?
 - 1. 45 miles per gallon
- 2. 60 miles per gallon
- 3. 75 miles per gallon
- 4. 90 miles per gallon

- 4. What are the roots of the equation $x^2 10x 20 = 0$?
 - 1. $10 \pm 6\sqrt{5}$
 - 2. $-10 \pm 6\sqrt{5}$
 - 3. $5\pm 3\sqrt{5}$
 - 4. -5±3√5
- 5. What are the roots of the equation $x^2 + 8x 12 = 0$?
 - 1. $-4 \pm 2\sqrt{7}$
 - 2. $4 \pm 2\sqrt{7}$
 - 3. $-8\pm4\sqrt{7}$
 - 4. 8±4√7
- 6. What are the solutions to the equation $x^2 8x = 24$?

1.
$$x = 4 \pm 2\sqrt{10}$$

2.
$$x = -4 \pm 2\sqrt{10}$$

3.
$$x = 4 \pm 2\sqrt{2}$$

4.
$$x = -4 \pm 2\sqrt{2}$$