$$R = \frac{F}{N + F}$$

A website uses the formula above to calculate a seller's rating, R, based on the number of favorable reviews, F, and unfavorable reviews, N. Which of the following expresses the number of favorable reviews in terms of the other variables?

A)
$$F = \frac{RN}{R-1}$$
B) $F = \frac{RN}{1-R}$
 $F = RN + RF$
 $-RF = RN$
 $-RF = RN$
 $F - RF = RN$

B)
$$F = \frac{RN}{1 - R}$$

$$C) \quad F = \frac{N}{1 - R}$$

D)
$$F = \frac{N}{R-1}$$

$$y = \frac{2x}{5+x}$$

$$2x = 5y + xy$$

$$-xy - xy$$

$$2x - xy = 5y$$

$$x(2-xy) = 5y$$

$$x = \frac{5y}{2-y}$$

$$x = \frac{5y}{2-y}$$

$$A = \frac{2 - B}{3B + 5C}$$

$$A = \frac{3AB}{3B + 5AC}$$

$$-1 - 3AB - 3AB - 2$$

$$-B - 3AB - 5AC - 2$$

$$-B - 3AB = \frac{5AC - 2}{-1 - 3A}$$

$$B = \frac{5AC - 2}{-1 - 3A}$$

$$B = \frac{5AC - 2}{-1 - 3A}$$

13

What is the sum of all values of m that satisfy

$$2m^2 - 16m + 8 = 0 ?$$

A)
$$-8$$
B) $-4\sqrt{3}$
C) $4\sqrt{3}$

$$5 = \frac{-(-1b)}{2}$$

$$\begin{array}{ccc}
C) & 4\sqrt{3} \\
D) & 8
\end{array} = \underline{16}$$

$$ax^2+bx+c=0$$

$$3x^2 + 7x = 5$$
 $3x^2 + 7x - 5 = 0$

Find sum and prod
of roots.
$$S = \frac{-b}{a} = \frac{-7}{3}$$
 $P = \frac{c}{a} = \frac{-5}{3}$

14

A radioactive substance decays at an annual rate of 13 percent. If the initial amount of the substance is 325 grams, which of the following functions f models the remaining amount of the substance, in grams, t years later?

(A)
$$f(t) = 325(0.87)^t$$

B)
$$f(t) = 325(0.13)^t$$

C)
$$f(t) = 0.87(325)^t$$

D)
$$f(t) = 0.13(325)^t$$

The expression $\frac{5x-2}{x+3}$ is equivalent to which of the

following?

A)
$$\frac{5-2}{3}$$

B)
$$5 - \frac{2}{3}$$

C)
$$5 - \frac{2}{x+3}$$

(D)
$$5 - \frac{17}{x+3}$$

following?

A)
$$\frac{5-2}{3}$$

B) $5-\frac{2}{3}$

C) $5-\frac{2}{x+3}$

D) $5-\frac{17}{x+3}$
 $5-\frac{17}{x+3}$

$$5 - \frac{17}{x+3}$$

Express
$$\frac{2x-5}{x+2}$$
 in $Q(x) + \frac{r}{x+2}$
 $\frac{-2}{1}$ $\frac{2}{1}$ $\frac{-4}{2}$ $\frac{4}{2}$ $\frac{2}{1}$ $\frac{-4}{2}$