$$
\begin{aligned}
& \text { If } \frac{a}{b}=2 \text {, whatis the evlueo of } \frac{4 b}{a} \longrightarrow 4\left(\frac{b}{a}\right)=4\left(\frac{1}{2}\right)=(2) \\
& \text { (1) } \text { A) }_{1} \text { A) } \frac{a}{b}=2 \quad \frac{4}{2}=2=\frac{2}{4}=\frac{1}{2} \\
& \frac{b}{a}=\frac{1}{2} \\
& \frac{4 \cdot 2}{4}=\frac{8}{4}=2
\end{aligned}
$$

Let $\frac{a}{b}=\frac{3}{2}$
Find $\frac{3 b}{2 a} \quad \frac{3(2)}{2(3)} \frac{6}{6}=1$

9

$$
\begin{aligned}
3 x+4 y & =-23 \\
2 y-x & =-19
\end{aligned}
$$

What is the solution (x, y) to the system of equations above?
A) $(-5,-2)$
B) $(3,-8)$
C) $(4,-6)$
D) $(9,-6)$

$$
3 x+4 y=-23
$$

$$
\begin{aligned}
\times 3 G-x+2 y & =-19 \\
-3 x+6 y & =-57 \\
3 x+4 y & =-23 \\
10 y & =-80 \quad y=-8
\end{aligned}
$$

Let

$$
\begin{aligned}
& 3 x+2 y=8 \\
& 4 x-y=7
\end{aligned} \quad \begin{aligned}
& 3 x+2 y=8 \\
& 8 x-2 y=14
\end{aligned}
$$

$g(x)=a x^{2}+24$
For the function g defined above, a is a constant
and $g(4)=8$. What is the value of $g(-4)$?

$$
\begin{array}{ll}
\text { (1). } & g(4)=a(4)^{2}+24=8 \\
\text { () }-1 & g(-4)=a(-4)^{2}+24=8 \\
\text { D) }-8 & g(2)
\end{array}
$$

Let $y=a|x-3|+5$

$$
a|5-3|+5=10
$$

If $y=10$, when $x=5$
what is y when $x=1 ? \quad a|1-3|+5$

11

$$
\begin{aligned}
& b=2.35+0.25 x \\
& c=1.75+0.40 x
\end{aligned}
$$

In the equations above, b and c represent the price per pound, in dollars, of beef and chicken, respectively, x weeks after July 1 during last summer. What was the price per pound of beef when it was equal to the price per pound of chicken?
A) $\$ 2.60$
B) $\$ 2.85$
C) $\$ 2.95$
D) $\$ 3.35$

