CHAPTER EXERCISE: Answers for this chapter start on page 252.

A calculator should NOT be used on the following questions.

1

If $a^{-\frac{1}{2}} = 3$, what is the value of a?

- A) -9
- B) $\frac{1}{6}$
- C) $\frac{1}{3}$
- D) 9

2

Let $n = 1^2 + 1^4 + 1^6 + 1^8 + \ldots + 1^{50}$

What is the value of n?

- A) 10
- B) 20
- C) 25
- D) 30

3

If $4^{2n+3} = 8^{n+5}$, what is the value of n?

- A) 6
- B) 7
- C) 8
- D) 9

4

If $\frac{2^x}{2^y} = 2^3$, then *x* must equal

- A) y + 3
- B) y 3
- C) 3 y
- D) 3y

5

If $3^x = 10$, what is the value of 3^{x-3} ?

- A) $\frac{10}{3}$
- B) $\frac{10}{9}$
- C) $\frac{10}{27}$
- D) $\frac{27}{10}$

6

If $x^2y^3 = 10$ and $x^3y^2 = 8$, what is the value of x^5y^5 ?

- A) 18
- B) 20
- C) 40
- D) 80

7

If *a* and *b* are positive even integers, which of the following is greatest?

- A) $(-2a)^{b}$
- B) $(-2a)^{2b}$
- C) $(2a)^{b}$
- D) $2a^{2b}$

R

Which of the following is equivalent to $x^{\frac{2a}{b}}$, for all values of x?

- A) $\sqrt[b]{ax^2}$
- B) $\sqrt[b]{x^{2a}}$
- C) $\sqrt[b]{x^{a+2}}$
- D) $\sqrt[2a]{x^b}$

If $x^2 = y^3$, for what value of z does $x^{3z} = y^9$?

- A) -1
- B) 0
- C) 1
- D) 2

If $2^{x+3} - 2^x = k(2^x)$, what is the value of k?

- A) 3
- B) 5
- C) 7
- D) 8

If $\sqrt{x\sqrt{x}} = x^a$, then what is the value of *a*?

- A) $\frac{1}{2}$ B) $\frac{3}{4}$
- C) 1
- D) $\frac{4}{3}$

$$2\sqrt{x+2} = 3\sqrt{2}$$

If x > 0 in the equation above, what is the value of x?

- A) 2.5
- B) 3
- C) 3.5
- D) 4

If $x^{ac} \cdot x^{bc} = x^{30}$, x > 1, and a + b = 5, what is the value of c?

- A) 3
- B) 5
- C) 6
- D) 10

A calculator is allowed on the following questions.

If $n^3 = x$ and $n^4 = 20x$, where n > 0, what is the value of x?

If $x^8y^7 = 333$ and $x^7y^6 = 3$, what is the value of

28

Answers to the Exercises

Chapter 1: Exponents & Radicals

EXERCISE 1:

1. 1

2. -1

3. 1

4. -1

5. 1

6. -1

7. -1

8. -27

9. -27

10. 27

11. -36

12. 64

13. -72

14. 108

15. -648

16. 1

17. $\frac{1}{6}$

18. $\frac{1}{4}$

19. 1

20. 9

21. $\frac{1}{9}$

22. 125

23. $\frac{1}{125}$

24. 49

25. $\frac{1}{49}$

26. 1,000

27. $\frac{1}{1,000}$

EXERCISE 2:

1.
$$6x^5$$

2.
$$\frac{8}{k^2}$$

3.
$$15x^2$$

5.
$$\frac{1}{8x^6}$$

6.
$$-\frac{9b^5}{a^3}$$

7.
$$\frac{n^4}{2}$$

8.
$$a^4b^6$$

9.
$$\frac{y^2}{x^2}$$

10.
$$x^3$$

11.
$$\frac{x^6}{y^3}$$

12.
$$\frac{3u^2}{4}$$

13.
$$-8u^3v^3$$

14.
$$x^5$$

15.
$$3x^8$$

17.
$$x^9$$

18.
$$\frac{2}{x^3}$$

20.
$$\frac{1}{a^6}$$

21.
$$b^{12}$$

22.
$$\frac{m^4}{n}$$

23.
$$x^2$$

24.
$$\frac{1}{mn^2}$$

26.
$$\frac{m^6}{n^9}$$

27.
$$x^5y^7z^9$$

EXERCISE 3:

1.
$$2\sqrt{3}$$

2.
$$4\sqrt{6}$$

3.
$$3\sqrt{5}$$

4.
$$3\sqrt{2}$$

5.
$$6\sqrt{3}$$

6.
$$15\sqrt{3}$$

7.
$$4\sqrt{2}$$

8.
$$10\sqrt{2}$$

9.
$$2\sqrt{2}$$

10.
$$8\sqrt{2}$$

11.
$$x = 50$$

12.
$$x = 5$$

13.
$$x = 2$$

14.
$$x = 8$$

15.
$$x = 21$$

16.
$$x = \frac{1}{2}$$

17.
$$x = 6$$

18.
$$x = 6$$

CHAPTER EXERCISE:

1. *B*

$$a^{-\frac{1}{2}} = 3$$

$$\frac{1}{a^{\frac{1}{2}}} = 3$$

$$1 = 3\sqrt{a}$$

$$\frac{1}{3} = \sqrt{a}$$

$$\frac{1}{9} = a$$

2. C It's obvious that there will be a bunch of 1's, but how many? Well, how many even numbers are there between 2 and 50? If we take the list

and divide each element by 2,

we can clearly see that there are 25 numbers. Therefore, *n* is the sum of twenty-five 1's. The answer is 25.

3. D

$$2^{2(2n+3)} = 2^{3(n+5)}$$
$$2(2n+3) = 3(n+5)$$
$$4n+6 = 3n+15$$
$$n = 9$$

4. *A*

$$\frac{2^{x}}{2^{y}} = 2^{3}$$

$$2^{x-y} = 2^{3}$$

$$x - y = 3$$

$$x = y + 3$$

5.
$$\boxed{C}$$

$$3^{x-3} = \frac{3^x}{3^3} = \frac{10}{3^3} = \frac{10}{27}$$

- 6. D Multiply both equations together. The left hand side gives x^5y^5 . The right hand side gives 80.
- 7. \boxed{B} To avoid any trickiness, it's best to plug in numbers. Let a=2 and b=2. Going through each choice,

A)
$$(-4)^2 = 16$$

B)
$$(-4)^4 = 256$$

C)
$$(2 \cdot 2)^2 = 16$$

D)
$$2 \cdot 2^4 = 2 \cdot 16 = 32$$

- (B) is the largest.
- 8. B The 2a means raised to the 2a power and the b on the bottom means the bth root.
- 9. D Cube both sides of the first equation,

$$(x^2)^3 = (y^3)^3$$
$$x^6 = y^9$$

Now y^9 can be replaced by x^6 ,

$$x^{3z} = y^9$$
$$x^{3z} = x^6$$
$$3z = 6$$
$$z = 2$$

10. *C*

$$2^{x+3} - 2^{x} = k(2^{x})$$

$$(2^{x})(2^{3}) - 2^{x} = k(2^{x})$$

$$2^{x}(2^{3} - 1) = k(2^{x})$$

$$2^{x}(7) = k(2^{x})$$

$$7 = k$$

11. *B*

$$\sqrt{x\sqrt{x}} = \sqrt{x \cdot x^{\frac{1}{2}}} = \sqrt{x^{\frac{3}{2}}} = (x^{\frac{3}{2}})^{\frac{1}{2}} = x^{\frac{3}{4}}$$

Therefore,
$$a = \frac{3}{4}$$

12. A Squaring both sides ("unsimplifying" will get you the same result),

$$(2\sqrt{x+2})^2 = (3\sqrt{2})^2$$
$$4(x+2) = 18$$
$$4x+8 = 18$$
$$4x = 10$$
$$x = 2.5$$

13. *C*

$$x^{ac} \cdot x^{bc} = x^{30}$$
$$x^{ac+bc} = x^{30}$$
$$ac + bc = 30$$
$$(a+b)c = 30$$
$$5c = 30$$
$$c = 6$$

14. 8,000 Multiply the first equation by n to get

$$n^4 = nx$$

Substitute this into the left side of the second equation,

$$nx = 20x$$

$$n = 20$$

Using the first equation, $x = n^3 = (20)^3 = 8,000$

15. 111

$$x^7y^6=3$$

Multiply both sides by xy,

$$x^8y^7 = 3xy$$

We do this to make the following substitution,

$$3xy = 333$$

$$xy = 111$$