Limits and Continuity

Brief Review

Limit – intended height (y-value) of the function.

Properties: add, subtract, divide, multiply, multiply constant and raise to any power.

Techniques to Evaluation:

- Direct Substitution plug the x-value in...if you get a number you are done...if you get an indeterminate form....
 - 1.) Try to factor the expression. Cancel common factors and try direct substitution again.
 - 2.) Try tables or graphs....try plugging in a number close to the x-value to the right and the left.
 - 3.) If you are in BC Calculus try L'Hopital's Rule or a logarithm.

One sided limits:

$$\lim_{x\to c^+} f(x)$$
 is a limit from the RIGHT

$$\lim_{x\to c^-} f(x)$$
 is a limit from the LEFT

Limits that approach infinity:

If it's a rational function....take the largest term on the top and bottom and simplify and then take the limit.

Remember: 1/small = BIG (infinity) 1/BIG = SMALL(zero)and it doesn't matter if that 1 is a 4 or a 10 or a - 3.

CONTINUITY:

- 1.) Function value must exist.
- 2.) Limit must exist.
- 3.) Function value must equal the limit,

Non-Calculator Active - 2008

1.
$$\lim_{x \to \infty} \frac{(2x-1)(3-x)}{(x-1)(x+3)}$$
 is

(A) -3 (B) -2

(C) 2

(D) 3

(E) nonexistent

5.
$$\lim_{x \to 0} \frac{5x^4 + 8x^2}{3x^4 - 16x^2}$$
 is

(A) $-\frac{1}{2}$ (B) 0 (C) 1 (D) $\frac{5}{3}+1$ (E) nonexistent

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

6. Let f be the function defined above. Which of the following statements about f are true?

I. f has a limit at x = 2.

II. f is continuous at x = 2.

III. f is differentiable at x = 2.

(A) I only

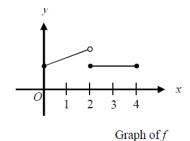
(B) II only

(C) III only

(D) I and II only

(E) I, II, and III

Calculator Active - 2008



77. The figure above shows the graph of a function f with domain $0 \le x \le 4$. Which of the following statements are true?

- I. $\lim_{x\to 2^{-}} f(x)$ exists.
- II. $\lim_{x\to 2^+} f(x)$ exists.
- III. $\lim_{x\to 2} f(x)$ exists.
- (A) I only
- (B) II only
- (C) I and II only
- (D) I and III only (E) I, II, and III

89. The function f is continuous for $-2 \le x \le 2$ and f(-2) = f(2) = 0. If there is no c, where

-2 < c < 2, for which f'(c) = 0, which of the following statements must be true?

- (A) For -2 < k < 2, f'(k) > 0.
- (B) For -2 < k < 2, f'(k) < 0.
- (C) For -2 < k < 2, f'(k) exists.
- (D) For -2 < k < 2, f'(k) exists, but f' is not continuous.
- (E) For some k, where -2 < k < 2, f'(k) does not exist.

Non-Calculator Active 2003

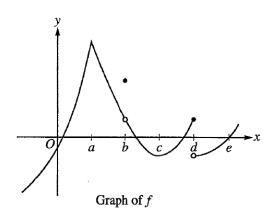
3. For $x \ge 0$, the horizontal line y = 2 is an asymptote for the graph of the function f. Which of the following statements must be true?

(A)
$$f(0) = 2$$

- (B) $f(x) \neq 2$ for all $x \geq 0$
- (C) f(2) is undefined.
- (D) $\lim_{x\to 2} f(x) = \infty$
- (E) $\lim_{x\to\infty} f(x) = 2$

6.
$$\lim_{x \to \infty} \frac{x^3 - 2x^2 + 3x - 4}{4x^3 - 3x^2 + 2x - 1} =$$

- (A) 4
- **(B)** 1
- (C) $\frac{1}{4}$
- (D) 0
- (E) -1



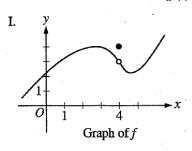
- 13. The graph of a function f is shown above. At which value of x is f continuous, but not differentiable?
 - (A) a
- (B) b
- (C) c
- (D) d
- (E) e

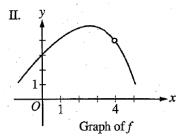
$$f(x) = \begin{cases} x+2 & \text{if } x \le 3\\ 4x-7 & \text{if } x > 3 \end{cases}$$

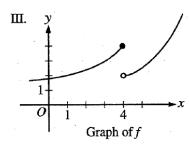
- 20. Let f be the function given above. Which of the following statements are true about f?
 - I. $\lim_{x \to 3} f(x)$ exists.
 - II. f is continuous at x = 3.
 - III. f is differentiable at x = 3.
 - (A) None
 - (B) I only
 - (C) II only
 - (D) I and II only
 - (E) I, II, and III

Calculator Active – 2003

79. For which of the following does $\lim_{x\to 4} f(x)$ exist?







- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I and III only

Free Response 2011 #6 Non-Calculator Active

- 6. Let f be a function defined by $f(x) = \begin{cases} 1 2\sin x & \text{for } x \le 0 \\ e^{-4x} & \text{for } x > 0. \end{cases}$
 - (a) Show that f is continuous at x = 0.

Free Response 2011B #2 Calculator Active

2. A 12,000-liter tank of water is filled to capacity. At time t = 0, water begins to drain out of the tank at a rate modeled by r(t), measured in liters per hour, where r is given by the piecewise-defined function

$$r(t) = \begin{cases} \frac{600t}{t+3} & \text{for } 0 \le t \le 5\\ 1000e^{-0.2t} & \text{for } t > 5 \end{cases}$$

(a) Is r continuous at t = 5? Show the work that leads to your answer.

Free Response 2008 #6 Non-Calculator Active

- 6. Let f be the function given by $f(x) = \frac{\ln x}{x}$ for all x > 0. The derivative of f is given by $f'(x) = \frac{1 \ln x}{x^2}$.
- (d) Find $\lim_{x\to 0^+} f(x)$.

Free Response 2003 #6 Non-Calculator Active

6. Let f be the function defined by

$$f(x) = \begin{cases} \sqrt{x+1} & \text{for } 0 \le x \le 3\\ 5 - x & \text{for } 3 < x \le 5. \end{cases}$$

(a) Is f continuous at x = 3? Explain why or why not.

Free Response Practice

Given the function
$$f(x) = \frac{x^3 + 2x^2 - 3x}{3x^2 + 3x - 6}$$
.

- (a) What are the zeros of f(x)?
- (b) What are the vertical asymptotes of f(x)?
- (c) The end behavior model of f(x) is the function g(x). What is g(x)?
- (d) What is $\lim_{x \to \infty} f(x)$? What is $\lim_{x \to \infty} \frac{f(x)}{g(x)}$?