Relating f, f', and f"

AP Calculus

Multiple Choice Questions

1. 1998 #6 (BC) - No Calc:

The graph of y = h(x) is shown above. Which of the following could be the graph of y = h'(x)?

a.

c.

e.

b.

d.

- 2. **1998** #1 (BC) No Calc: What are all values of x for which the function f defined by $f(x) = x^3 + 3x^2 9x + 7$ is increasing?
 - a. -3 < x < 1
- c. x < -3 or x > 1
- e. All real numbers

- b. -1 < x < 1
- d. x < -1 or x > 3

3. 1998 #17 (BC) - No Calc:

The graph of a twice-differentiable function f is shown in the figure above. Which of the following is true?

a.
$$f(1) < f'(1) < f''(1)$$

a.
$$f(1) < f'(1) < f''(1)$$
 c. $f'(1) < f(1) < f''(1)$ e. $f''(1) < f'(1) < f(1)$

e.
$$f''(1) < f'(1) < f(1)$$

b.
$$f(1) < f''(1) < f'(1)$$
 d. $f''(1) < f(1) < f'(1)$

d.
$$f''(1) < f(1) < f'(1)$$

4. 2003 #90 (BC) - Calc OK:

The graph of f', the derivative of the function f, is shown above. If f(0) = 0, which of the following must be true?

I.
$$f(0) > f(1)$$

II.
$$f(2) > f(1)$$

III.
$$f(1) > f(3)$$

I only

c. III only

II and III only

II only

d. I and II only

5. 1997 #12 (BC) - No Calc:

The graph of f', the derivative of f, is shown in the figure above. Which of the following describes all relative extrema of f on the open interval (a,b)?

- a. One relative maximum and two relative minima
- b. Two relative maxima and one relative minimum
- c. Three relative maxima and one relative minimum
- d. One relative maximum and three relative minima
- e. Three relative maxima and two relative minima
- 6. 1997 #3 (BC) No Calc: The function f given by $f(x) = 3x^5 4x^3 3x$ has a relative maximum at $x = 3x^5 4x^3 3x$

b.
$$\frac{-\sqrt{5}}{5}$$

d.
$$\frac{\sqrt{5}}{5}$$

7. 1997 #9 (BC) - No Calc:

The function f is defined on the closed interval [0,8]. The graph of its derivative f' is shown above. At what value of x does the absolute minimum of f occur?

- a. 0
- b. 2
- c. 4
- d. 6
- e 8

- 8. **1998** #16 (BC) No Calc: If f is the function defined by $f(x) = 3x^5 5x^4$, what are all the x-coordinates of points of inflection for the graph of f?
 - a. -1

c. 1

e. -1, 0, and 1

b. 0

- d. 0 and 1
- 9. 1997 #8 (BC) No Calc:

- The function f is defined on the closed interval [0,8]. The graph of its derivative f' is shown above. How many points of inflection does the graph of f have?
- a. Two
- b. Three
- c. Four
- d. Five
- e. Six
- 10. **2003** #86 (BC) Calc OK: Let f be the function with derivative defined by $f'(x) = \sin(x^3)$ on the interval -1.8 < x < 1.8. How many points of inflection does the graph of f have on this interval?
 - a. Two
- b. Three
- c. Four
- d. Five
- e. Six
- 11. **1997** #80 (BC) Calc OK: Let f be the function given by $f(x) = \cos(2x) + \ln(3x)$. What is the least value of x at which the graph of f changes concavity?
 - a. 0.56
- b. 0.93
- c. 1.18
- d. 2.38
- e. 2.44

Solutions:

- 1. E
- 2. C
- 3. D
- 4. B
- 5. A
- 6. A
- 7. A
- 8. C
- 9. E
- 10. C
- 11. B

3 2009B #5 (AB & BC) a,b,c - No Calc

Let f be a twice-differentiable function defined on the interval -1.2 < x < 3.2 with f(1) = 2. The graph of f', the derivative of f, is shown above. The graph of f' crosses the x-axis at x = -1 and x = 3 and has a horizontal tangent at x = 2. Let g be the function given by $g(x) = e^{f(x)}$.

- (a) Write an equation for the line tangent to the graph of g at x = 1.
- (b) For -1.2 < x < 3.2, find all values of x at which g has a local maximum. Justify your answer.
- (c) The second derivative of g is $g''(x) = e^{f(x)} [(f'(x))^2 + f''(x)]$. Is g''(-1) positive, negative, or zero? Justify your answer.

4 2007B #4 (AB & BC) - No Calc

Let f be a function defined on the closed interval $-5 \le x \le 5$ with f(1) = 3. The graph of f', the derivative of f, consists of two semicircles and two line segments, as shown above.

- (a) For -5 < x < 5, find all values x at which f has a relative maximum. Justify your answer.
- (b) For -5 < x < 5, find all values x at which the graph of f has a point of inflection. Justify your answer.
- (c) Find all intervals on which the graph of f is concave up and also has positive slope. Explain your reasoning.

5 2008 #5 (BC) a,b – No Calc

The derivative of a function f is given by $f'(x) = (x-3)e^x$ for x > 0, and f(1) = 7.

- (a) The function f has a critical point at x = 3. At this point, does f have a relative minimum, a relative maximum, or neither? Justify your answer.
- (b) On what intervals, if any, is the graph of f both decreasing and concave up? Explain your reasoning.

7 2004 #4 (AB & BC) a,c - No Calc

Consider the curve given by $x^2 + 4y^2 = 7 + 3xy$.

- (a) Show that $\frac{dy}{dx} = \frac{3y 2x}{8y 3x}$.
- (c) Find the value of $\frac{d^2y}{dx^2}$ at the point *P* found in part (b). Does the curve have a local maximum, a local minimum, or neither at the point *P*? Justify your answer.

3 2009B #5 (AB & BC) a,b,c – No Calc – Scoring Guidelines:

- (a) $g(1) = e^{f(1)} = e^2$ $g'(x) = e^{f(x)}f'(x), \ g'(1) = e^{f(1)}f'(1) = -4e^2$ The tangent line is given by $y = e^2 - 4e^2(x-1)$.
- 3: $\begin{cases} 1: g'(x) \\ 1: g(1) \text{ and } g'(1) \\ 1: \text{ tangent line equation} \end{cases}$
- (b) $g'(x) = e^{f(x)}f'(x)$ $e^{f(x)} > 0$ for all xSo, g' changes from positive to negative only when f' changes from positive to negative. This occurs at x = -1 only. Thus, g has a local maximum at x = -1.
- $2: \begin{cases} 1 : answer \\ 1 : justification \end{cases}$

- (c) $g''(-1) = e^{f(-1)} [(f'(-1))^2 + f''(-1)]$ $e^{f(-1)} > 0$ and f'(-1) = 0Since f' is decreasing on a neighborhood of -1, f''(-1) < 0. Therefore, g''(-1) < 0.
- 2 : $\begin{cases} 1 : answer \\ 1 : justification \end{cases}$

4 2007B #4 (AB & BC) – No Calc – Scoring Guidelines:

- (a) f'(x) = 0 at x = -3, 1, 4 f' changes from positive to negative at -3 and 4. Thus, f has a relative maximum at x = -3 and at x = 4.
- $2: \begin{cases} 1: x\text{-values} \\ 1: \text{justification} \end{cases}$
- (b) f' changes from increasing to decreasing, or vice versa, at x = -4, -1, and 2. Thus, the graph of f has points of inflection when x = -4, -1, and 2.
- 2: $\begin{cases} 1: x\text{-values} \\ 1: \text{justification} \end{cases}$
- (c) The graph of f is concave up with positive slope where f' is increasing and positive: -5 < x < -4 and 1 < x < 2.
- 2 : $\begin{cases} 1 : intervals \\ 1 : explanation \end{cases}$
- (d) Candidates for the absolute minimum are where f' changes from negative to positive (at x = 1) and at the endpoints (x = -5, 5).

endpoints
$$(x = -5, 5)$$
.
 $f(-5) = 3 + \int_{1}^{-5} f'(x) dx = 3 - \frac{\pi}{2} + 2\pi > 3$

$$f(5) = 3 + \int_{1}^{5} f'(x) dx = 3 + \frac{3 \cdot 2}{2} - \frac{1}{2} > 3$$

The absolute minimum value of f on [-5, 5] is f(1) = 3.

- $\begin{cases}
 1 : identifies x = 1 \text{ as a candidate} \\
 3 : \begin{cases}
 1 : considers endpoints
 \end{cases}$
- 3 : { 1 : considers endpoints 1 : value and explanation

5 2008 #5 (BC) a,b - No Calc - Scoring Guidelines:

(a) f'(x) < 0 for 0 < x < 3 and f'(x) > 0 for x > 3

Therefore, f has a relative minimum at x = 3.

2: $\begin{cases} 1: \text{ minimum at } x = 3 \\ 1: \text{ justification} \end{cases}$

(b) $f''(x) = e^x + (x-3)e^x = (x-2)e^x$ f''(x) > 0 for x > 2

$$f'(x) < 0 \text{ for } 0 < x < 3$$

f(1) = 3

Therefore, the graph of f is both decreasing and concave up on the interval 2 < x < 3.

3: $\begin{cases} 2: f''(x) \\ 1: \text{ answer with reason} \end{cases}$

2004 #4 (AB & BC) a,c - No Calc - Scoring Guidelines:

(a)
$$2x + 8yy' = 3y + 3xy'$$

 $(8y - 3x)y' = 3y - 2x$
 $y' = \frac{3y - 2x}{8y - 3x}$

$$2: \begin{cases} 1: \text{ implicit differentiation} \\ 1: \text{ solves for } y' \end{cases}$$

(c)
$$\frac{d^2y}{dx^2} = \frac{(8y - 3x)(3y' - 2) - (3y - 2x)(8y' - 3)}{(8y - 3x)^2}$$
At $P = (3, 2)$,
$$\frac{d^2y}{dx^2} = \frac{(16 - 9)(-2)}{(16 - 9)^2} = -\frac{2}{7}.$$
Since $y' = 0$ and $y'' < 0$ at P , the curve has a local
$$4 : \begin{cases} 2 : \frac{d^2y}{dx^2} \\ 1 : \text{value of } \frac{d^2y}{dx^2} \text{ at } (3, 2) \\ 1 : \text{conclusion with justification} \end{cases}$$

Since
$$y' = 0$$
 and $y'' < 0$ at P , the curve has a local maximum at P .

4:
$$\begin{cases} 2: \frac{d^2y}{dx^2} \\ 1: \text{ value of } \frac{d^2y}{dx^2} \text{ at } (3, 2) \\ 1: \text{ conclusion with justification} \end{cases}$$