More practices on derivatives
AP Calc AB

1. If $f(x)=e^{1 / x}$, then $f^{\prime}(x)=$
(A) $-\frac{e^{1 / x}}{x^{2}}$
(B) $-e^{1 / x}$
(C) $\frac{e^{1 / x}}{x}$
(D) $\frac{e^{1 / x}}{x^{2}}$
(E) $\frac{1}{x} e^{(1 / x)-1}$
2. For what non-negative value of b is the line given by $y=-\frac{1}{3} x+b$ normal to the curve $y=x^{3}$?
(A) 0
(B) 1
(C) $\frac{4}{3}$
(D) $\frac{10}{3}$
(E) $\frac{10 \sqrt{3}}{3}$
3. If $f(x)=\frac{x-1}{x+1}$ for all $x \neq-1$, then $f^{\prime}(1)=$
(A) -1
(B) $-\frac{1}{2}$
(C) 0
(D) $\frac{1}{2}$
(E) 1
4. If $h(x)=f^{2}(x)-g^{2}(x), f^{\prime}(x)=-g(x)$, and $g^{\prime}(x)=f(x)$, then $h^{\prime}(x)=$
(A) 0
(B) 1
(C) $-4 f(x) g(x)$
(D) $(-g(x))^{2}-(f(x))^{2}$
(E) $\quad-2(-g(x)+f(x))$
5. If f is a function such that $\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=0$, which of the following must be true?
(A) The limit of $f(x)$ as x approaches 2 does not exist.
(B) f is not defined at $x=2$.
(C) The derivative of f at $x=2$ is 0 .
(D) f is continuous at $x=0$.
(E) $\quad f(2)=0$
6. Let $y=x \sqrt{1+x^{2}}$. When $x=0$ and $d x=2$, the value of $d y$ is
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2
7. If $f(x)=2+|x-3|$ for all x, then the value of the derivative $f^{\prime}(x)$ at $x=3$ is
(A) -1
(B) 0
(C) 1
(D) 2
(E) nonexistent
8. If f and g are twice differentiable functions such that $g(x)=e^{f(x)}$ and $g^{\prime \prime}(x)=h(x) e^{f(x)}$, then $h(x)=$
(A) $f^{\prime}(x)+f^{\prime \prime}(x)$
(B) $f^{\prime}(x)+\left(f^{\prime \prime}(x)\right)^{2}$
(C) $\left(f^{\prime}(x)+f^{\prime \prime}(x)\right)^{2}$
(D) $\left(f^{\prime}(x)\right)^{2}+f^{\prime \prime}(x)$
(E) $2 f^{\prime}(x)+f^{\prime \prime}(x)$
9. An equation of the line normal to the graph of $y=x^{3}+3 x^{2}+7 x-1$ at the point where $x=-1$ is
(A) $4 x+y=-10$
(B) $x-4 y=23$
(C) $4 x-y=2$
(D) $x+4 y=25$
(E) $x+4 y=-25$
10. Suppose that f is an odd function; i.e., $f(-x)=-f(x)$ for all x. Suppose that $f^{\prime}\left(x_{0}\right)$ exists. Which of the following must necessarily be equal to $f^{\prime}\left(-x_{0}\right)$?
(A) $f^{\prime}\left(x_{0}\right)$
(B) $-f^{\prime}\left(x_{0}\right)$
(C) $\frac{1}{f^{\prime}\left(x_{0}\right)}$
(D) $-\frac{1}{f^{\prime}\left(x_{0}\right)}$
(E) None of the above
11. Let f and g be differentiable functions such that

$$
\begin{array}{lll}
f(1)=2, & f^{\prime}(1)=3, & f^{\prime}(2)=-4, \\
g(1)=2, & g^{\prime}(1)=-3, & g^{\prime}(2)=5 .
\end{array}
$$

If $h(x)=f(g(x))$, then $h^{\prime}(1)=$
(A) $\quad-9$
(B) -4
(C) 0
(D) 12
(E) 15
45. If $\frac{d}{d x}(f(x))=g(x)$ and $\frac{d}{d x}(g(x))=f\left(x^{2}\right)$, then $\frac{d^{2}}{d x^{2}}\left(f\left(x^{3}\right)\right)=$
(A) $f\left(x^{6}\right)$
(B) $g\left(x^{3}\right)$
(C) $3 x^{2} g\left(x^{3}\right)$
(D) $9 x^{4} f\left(x^{6}\right)+6 x g\left(x^{3}\right)$
(E) $f\left(x^{6}\right)+g\left(x^{3}\right)$

