Derivatives involving trig functions
AP Calc AB
4. If $f(x)=x+\sin x$, then $f^{\prime}(x)=$
(A) $1+\cos x$
(B) $1-\cos x$
(C) $\cos x$
(D) $\sin x-x \cos x$
(E) $\sin x+x \cos x$
6. If $f(x)=\frac{x}{\tan x}$, then $f^{\prime}\left(\frac{\pi}{4}\right)=$
(A) 2
(B) $\frac{1}{2}$
(C) $1+\frac{\pi}{2}$
(D) $\frac{\pi}{2}-1$
(E) $1-\frac{\pi}{2}$
7. $\frac{d}{d x} \cos ^{2}\left(x^{3}\right)=$
(A) $6 x^{2} \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
(B) $6 x^{2} \cos \left(x^{3}\right)$
(C) $\sin ^{2}\left(x^{3}\right)$
(D) $-6 x^{2} \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
(E) $-2 \sin \left(x^{3}\right) \cos \left(x^{3}\right)$
8. If $y=\sin x$ and $y^{(n)}$ means "the nth derivative of y with respect to x," then the smallest positive integer n for which $y^{(n)}=y$ is
(A) 2
(B) 4
(C) 5
(D) 6
(E) 8
8. If $y=\tan x-\cot x$, then $\frac{d y}{d x}=$
(A) $\sec x \csc x$
(B) $\sec x-\csc x$
(C) $\sec x+\csc x$
(D) $\sec ^{2} x-\csc ^{2} x$
(E) $\sec ^{2} x+\csc ^{2} x$
9. If $y=\cos ^{2} 3 x$, then $\frac{d y}{d x}=$
(A) $-6 \sin 3 x \cos 3 x$
(B) $-2 \cos 3 x$
(C) $2 \cos 3 x$
(D) $6 \cos 3 x$
(E) $2 \sin 3 x \cos 3 x$
10. $\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}$ is
(A) 0
(B) 1
(C) $\sin x$
(D) $\cos x$
(E) nonexistent
10. An equation of the line tangent to the graph of $y=\cos (2 x)$ at $x=\frac{\pi}{4}$ is
(A) $y-1=-\left(x-\frac{\pi}{4}\right)$
(B) $y-1=-2\left(x-\frac{\pi}{4}\right)$
(C) $y=2\left(x-\frac{\pi}{4}\right)$
(D) $y=-\left(x-\frac{\pi}{4}\right)$
(E) $y=-2\left(x-\frac{\pi}{4}\right)$
12. If $f(x)=\sin x$, then $f^{\prime}\left(\frac{\pi}{3}\right)=$
(A) $-\frac{1}{2}$
(B) $\frac{1}{2}$
(C) $\frac{\sqrt{2}}{2}$
(D) $\frac{\sqrt{3}}{2}$
(E) $\sqrt{3}$
15. If $f(x)=e^{\tan ^{2} x}$, then $f^{\prime}(x)=$
(A) $e^{\tan ^{2} x}$
(B) $\sec ^{2} x e^{\tan ^{2} x}$
(C) $\tan ^{2} x e^{\tan ^{2} x-1}$
(D) $2 \tan x \sec ^{2} x e^{\tan ^{2} x}$
(E) $2 \tan x e^{\tan ^{2} x}$
16. If $f(x)=\sin \left(e^{-x}\right)$, then $f^{\prime}(x)=$
(A) $-\cos \left(e^{-x}\right)$
(B) $\cos \left(e^{-x}\right)+e^{-x}$
(C) $\cos \left(e^{-x}\right)-e^{-x}$
(D) $e^{-x} \cos \left(e^{-x}\right)$
(E) $\quad-e^{-x} \cos \left(e^{-x}\right)$
18. If $y=2 \cos \left(\frac{x}{2}\right)$, then $\frac{d^{2} y}{d x^{2}}=$
(A) $-8 \cos \left(\frac{x}{2}\right)$
(B) $-2 \cos \left(\frac{x}{2}\right)$
(C) $-\sin \left(\frac{x}{2}\right)$
(D) $-\cos \left(\frac{x}{2}\right)$
(E) $-\frac{1}{2} \cos \left(\frac{x}{2}\right)$
18. If $y=\cos ^{2} x-\sin ^{2} x$, then $y^{\prime}=$
(A) -1
(B) 0
(C) $-2 \sin (2 x)$
(D) $\quad-2(\cos x+\sin x)$
(E) $\quad 2(\cos x-\sin x)$
29. The $\lim _{h \rightarrow 0} \frac{\tan 3(x+h)-\tan 3 x}{h}$ is
(A) 0
(B) $3 \sec ^{2}(3 x)$
(C) $\sec ^{2}(3 x)$
(D) $3 \cot (3 x)$
(E) nonexistent

