Derivatives involving trig functions AP Calc AB

- If $f(x) = x + \sin x$, then f'(x) =
 - (A) $1+\cos x$

(B) $1-\cos x$ (C) $\cos x$

(D) $\sin x - x \cos x$

- (E) $\sin x + x \cos x$
- 6. If $f(x) = \frac{x}{\tan x}$, then $f'\left(\frac{\pi}{4}\right) =$

- (A) 2 (B) $\frac{1}{2}$ (C) $1 + \frac{\pi}{2}$ (D) $\frac{\pi}{2} 1$ (E) $1 \frac{\pi}{2}$
- 7. $\frac{d}{dx}\cos^2(x^3) =$
 - (A) $6x^2 \sin(x^3)\cos(x^3)$
 - (B) $6x^2\cos(x^3)$
 - (C) $\sin^2(x^3)$
 - (D) $-6x^2 \sin(x^3) \cos(x^3)$
 - (E) $-2\sin(x^3)\cos(x^3)$
- 8. If $y = \sin x$ and $y^{(n)}$ means "the *n*th derivative of y with respect to x," then the smallest positive integer *n* for which $y^{(n)} = y$ is
 - (A) 2
- (B) 4
- (C) 5
- (D) 6
- (E) 8

- 8. If $y = \tan x \cot x$, then $\frac{dy}{dx} =$
 - (A) $\sec x \csc x$ (B) $\sec x \csc x$ (C) $\sec x + \csc x$ (D) $\sec^2 x \csc^2 x$ (E) $\sec^2 x + \csc^2 x$
- 9. If $y = \cos^2 3x$, then $\frac{dy}{dx} =$
 - (A) $-6\sin 3x\cos 3x$
- (B) $-2\cos 3x$

(C) $2\cos 3x$

(D) $6\cos 3x$

(E) $2\sin 3x\cos 3x$

- 10. $\lim_{h \to 0} \frac{\sin(x+h) \sin x}{h}$ is
 - (A) 0 (B) 1
- (C) $\sin x$
- (D) $\cos x$
- (E) nonexistent
- 10. An equation of the line tangent to the graph of $y = \cos(2x)$ at $x = \frac{\pi}{4}$ is
 - (A) $y-1=-\left(x-\frac{\pi}{4}\right)$
 - (B) $y-1 = -2\left(x-\frac{\pi}{4}\right)$
 - (C) $y = 2\left(x \frac{\pi}{4}\right)$
 - (D) $y = -\left(x \frac{\pi}{4}\right)$
 - (E) $y = -2\left(x \frac{\pi}{4}\right)$

- 12. If $f(x) = \sin x$, then $f'\left(\frac{\pi}{3}\right) =$
- (A) $-\frac{1}{2}$ (B) $\frac{1}{2}$ (C) $\frac{\sqrt{2}}{2}$ (D) $\frac{\sqrt{3}}{2}$

- 15. If $f(x) = e^{\tan^2 x}$, then f'(x) =
 - (A) $e^{\tan^2 x}$
 - (B) $\sec^2 x e^{\tan^2 x}$
 - (C) $\tan^2 x e^{\tan^2 x 1}$
 - (D) $2 \tan x \sec^2 x e^{\tan^2 x}$
 - $2\tan x e^{\tan^2 x}$ (E)
- 16. If $f(x) = \sin(e^{-x})$, then f'(x) =
 - (A) $-\cos(e^{-x})$
 - $(B) \quad \cos(e^{-x}) + e^{-x}$
 - $(C) \quad \cos(e^{-x}) e^{-x}$
 - (D) $e^{-x}\cos(e^{-x})$
 - (E) $-e^{-x}\cos(e^{-x})$

- 18. If $y = 2\cos\left(\frac{x}{2}\right)$, then $\frac{d^2y}{dx^2}$

- (A) $-8\cos\left(\frac{x}{2}\right)$ (B) $-2\cos\left(\frac{x}{2}\right)$ (C) $-\sin\left(\frac{x}{2}\right)$ (D) $-\cos\left(\frac{x}{2}\right)$ (E) $-\frac{1}{2}\cos\left(\frac{x}{2}\right)$
- 18. If $y = \cos^2 x \sin^2 x$, then y' =

- (A) -1 (B) 0 (C) $-2\sin(2x)$ (D) $-2(\cos x + \sin x)$ (E) $2(\cos x \sin x)$

- 29. The $\lim_{h \to 0} \frac{\tan 3(x+h) \tan 3x}{h}$ is

 - (A) 0 (B) $3\sec^2(3x)$ (C) $\sec^2(3x)$ (D) $3\cot(3x)$ (E) nonexistent