AP review

Volumes 2

2013

5. Let $f(x)=2 x^{2}-6 x+4$ and $g(x)=4 \cos \left(\frac{1}{4} \pi x\right)$. Let R be the region bounded by the graphs of f and g, as shown in the figure above.
(a) Find the area of R.
(b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line $y=4$.
(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an integral expression that gives the volume of the solid.

2014 (calculator)

2. Let R be the region enclosed by the graph of $f(x)=x^{4}-2.3 x^{3}+4$ and the horizontal line $y=4$, as shown in the figure above.
(a) Find the volume of the solid generated when R is rotated about the horizontal line $y=-2$.
(b) Region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is an isosceles right triangle with a leg in R. Find the volume of the solid.
(c) The vertical line $x=k$ divides R into two regions with equal areas. Write, but do not solve, an equation involving integral expressions whose solution gives the value k.

