$$
9-18
$$

(a) Find the intervals on which f is increasing or decrea
(b) Find the local maximum and minimum values of f.
(c) Find the intervals of concavity and the inflection points.
17. $f(x)=(\ln x) / \sqrt{x}$
$f^{\prime}=\frac{\sqrt{ } \frac{1}{x} \sqrt{x}-\frac{1}{2 \sqrt{x}} \ln x}{(\sqrt{x})^{2}}=\frac{\left(\frac{1}{\sqrt{x}}-\frac{\ln x}{2 \sqrt{x}}\right) 2 \sqrt{x}}{(x) 2 \sqrt{x}}$
$\frac{\sqrt{x}}{x}=\frac{1}{\sqrt{x}}$
$\frac{\sqrt{x}}{x}=\frac{1}{\sqrt{x}}$

b) $x=e^{2}$ has h. max $b / c f^{\prime}$ goes from t to as x increases.
c)

$$
\begin{aligned}
& f^{\prime}=\frac{2-\ln x}{2 x^{3 / 2}} / f^{4}=\frac{-\frac{1}{x}\left(2 x^{\frac{1}{2}}\right)-(2-\ln x) 3 x^{\frac{1}{2}}}{4 x^{3}} \\
& =\frac{-2 \sqrt{x}-3 \sqrt{x}(2-\ln x)}{4 x^{3}} \\
& \frac{-\sqrt{x}(2+6-3 \ln x)}{4 x^{3}} \\
& \begin{array}{l}
x=0 \\
8-3 \ln x=0
\end{array}=\frac{-\sqrt{x}(8-3 \ln x)}{4 x^{3}} \\
& \frac{8}{3}=\ln x \rightarrow x=e^{\frac{8}{3}} \\
& \overbrace{x=e}^{1} \underset{e^{8 / 3}}{1}+ \\
& f \text { concave } n:\left(0, e^{8 / 3}\right) \\
& f \text { concave up : }\left(e^{8 / 3}, \infty\right) \\
& \text { POI when } x=e^{8 / 3}
\end{aligned}
$$

13.

$$
\begin{aligned}
& f(x)=\sin x+\cos x, \quad 0 \leqslant x \leqslant 2 \pi \\
& f^{\prime}=\cos x-\sin x=0 \\
& \begin{array}{l}
\cos x=\sin x \\
1=\frac{\sin x}{\cos x}=\tan x,
\end{array}\left[\begin{array}{l}
x=\frac{\pi}{4}, \frac{5 \pi}{4} \\
4,+1+1+1
\end{array}\right. \\
& 0 \quad \frac{\pi}{4} x=\frac{\pi}{2} \frac{5 \pi}{4} 2 \pi \\
& f \text { inc: }\left(0, \frac{\pi}{\pi}\right) \cup\left(\frac{5 \pi}{4}, 2 \pi\right)
\end{aligned}
$$

$f \operatorname{dec}:\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right) \quad$ L. maxi $x=\frac{\pi}{4}$
L. $\min : x=\frac{5 \pi}{4}$

$$
\begin{aligned}
& f^{\prime \prime}=-\sin x-\cos x=0 \\
& \frac{\sin x}{\cos x}=-1=\tan x \quad x=\frac{3 \pi}{4}, \frac{7 \pi}{4} \\
& \qquad<_{0} \frac{3 \pi}{4} \quad \frac{7 \pi}{4} 2 \pi
\end{aligned}
$$

