19. The altitude of a triangle is increasing at a rate of $1 \mathrm{~cm} / \mathrm{min}$ while the area of the triangle is increasing at a rate of $\frac{2 \mathrm{~cm}^{2} / \mathrm{min} \text {. At what rate is the base of the triangle changing }}{\text { when the altitude is } 10 \mathrm{~cm} \text { and the arg is } 100 \mathrm{~cm}^{2} \text { ? }}$

$$
\begin{aligned}
\frac{d A}{d t} & =2 \mathrm{~cm}^{2} / \mathrm{min} \quad \frac{d b}{d t}=? \quad \frac{d h}{d t}=1 \mathrm{~cm} / \mathrm{min} \\
A & =\frac{1}{2} b h \rightarrow 100=\frac{1}{2} b(10) \rightarrow b=20 \\
\frac{d A}{d t} & =\frac{1}{2}\left(\frac{d b}{d t} h+\frac{d h}{d t} b\right) \\
2 & =\frac{1}{2}\left(\frac{d b}{d t}(10)+1(20)\right) \\
-16 & =10 \frac{d b}{d t} \\
-1.6 \mathrm{~cm} / \mathrm{m} & =\frac{d b}{d t}
\end{aligned}
$$

base is dechearling at the rate of

$$
1.6 \mathrm{~cm} / \mathrm{min} \text {. }
$$

21. At noon, ship A is 100 km west of ship B. Ship A is sailing south at $35 \mathrm{~km} / \mathrm{h}$ and ship B is sailing north at $25 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the ships changing at 4:00 PM?

$$
\begin{aligned}
& \text { 23. Water is leaking out of an inverted conical tank at a rate of } \\
& 10,000 \mathrm{~cm}^{3} / \mathrm{min} \text { at the same time that water is being pumped } \\
& \text { into the tank at a constant rate. The tank has height } 6 \mathrm{~m} \text { and the } \\
& \text { diameter at the top is } 4 \mathrm{~m} \text {. If the water level is rising at a rate } \\
& \text { of } 20 \mathrm{~cm} / \mathrm{min} \text { when the height of the water is } 2 \mathrm{~m} \text {, find the rate } \\
& \text { at which water is being pumperkinto the tank. } \\
& \frac{d h}{d t}=20 \mathrm{~cm} / \frac{d V}{d t h}=? \\
& V=\frac{1}{3} \pi r^{2} h \\
& V=\frac{1}{3} \pi r^{2}(3 r) \\
& V=\pi r^{3} \\
& \frac{d v}{d t}=3 \pi r^{2} \frac{d t}{d t} \\
& \frac{d v}{d t}=3 \pi\left(\frac{2}{3}\right)^{2} \frac{20}{3} \\
& 3 n=h \quad 3 \frac{d r}{d t}=\frac{d h}{d t} \\
& 3 r=2 \\
& r=\frac{2}{3} \quad \frac{d r}{d t}=\frac{20}{3} \\
& \frac{d V_{\text {pup }}}{d t}=10027.925 \mathrm{~cm}^{3} / \mathrm{mm}
\end{aligned}
$$

25. A water trough is 10 m long and a cross-section has the shape of an isosceles trapezoid that is 30 cm wide at the bottom, 80 cm wide at the top, and has height 50 cm . If the trough is being filled with water at the rate of $0.2 \mathrm{~m}^{3} / \mathrm{min}$, how fast is the water level rising when the water is 30 cm deep?

