

October 15, 2019

Find
$$\frac{dy}{dx}$$
 (m plicit diff
) $x^{2} + xy = 0$
 $x^{2} = -xy$
 $-x = y$
2) $y^{2} + xy = 0$ Assume $y = f(x)$
 $y = \frac{-x \pm \sqrt{x^{2} + 40}}{2}$ $\frac{2y \cdot dy}{dx} + 1 \cdot y + x \frac{dy}{dx} = 0$
 $2y \frac{dy}{dx} + x \frac{dy}{dx} = -y$
 $y = \frac{-x \pm \sqrt{x^{2} + 40}}{2}$ $\frac{dy}{dx} (2y + x) = -y$
 $y = \frac{-x \pm \sqrt{x^{2} - 40}}{2}$ $\frac{dy}{dx} (2y + x) = -y$
 $y = \frac{-x \pm \sqrt{x^{2} - 40}}{2}$ $\frac{dy}{dx} (2y + x) = -y$
 $y = \frac{-x \pm \sqrt{x^{2} - 40}}{2}$ $\frac{dy}{dx} (2y + x) = -y$
 $y = \frac{-x \pm \sqrt{x^{2} - 40}}{2}$ $\frac{dy}{dx} (2y + x) = -y$
 $\frac{dy}{dx} = -\frac{y}{dx} + \frac{y}{dx} = -\frac{y}{dx} + \frac{y}{dx} = 0$
 $\frac{dy}{dx} = -\frac{y}{dx} + \frac{y}{dx} = -\frac{$

9.
$$x^{4}(x + y) = y^{2}(3x - y)$$

 $4x^{3}(x+y) + x^{4}(1+\frac{dy}{dx}) = 2y\frac{dy}{dx}(3x-y)$
 $+y^{2}(3-\frac{dy}{dx})$

assume 4=fcx) 4 + Ky = 0 $(f(x))^2 + x(f(x)) = 0$ $2f(x)\cdot f'(x) + 1\cdot f(x) + \chi f'(x) = 0$ $2y\frac{dy}{dx} + y + x\frac{dy}{dx} = 0$

