Let
$$y = x^{2}$$

Find the slope b/w
i) (1,1) $\ddagger (z,4)$ m= 3
i) (1,1) $\ddagger (z,4)$ m= 3
i) (1,1) $\ddagger (1.5, y(1.5))$ m= 2.5
i) (1,1) $\ddagger (1.1, y(1.1))$ m= 2.1
i) $f(x) - f(x)$ m= 2.1
i) $f(x) - f(x) - f(x) - f(x)$ m= 2.1
i) $f(x) - f(x) - f(x) - f(x) - f(x)$ m= 2.1
i) $f(x) - f(x) - f(x$

Let
$$y = x^2$$

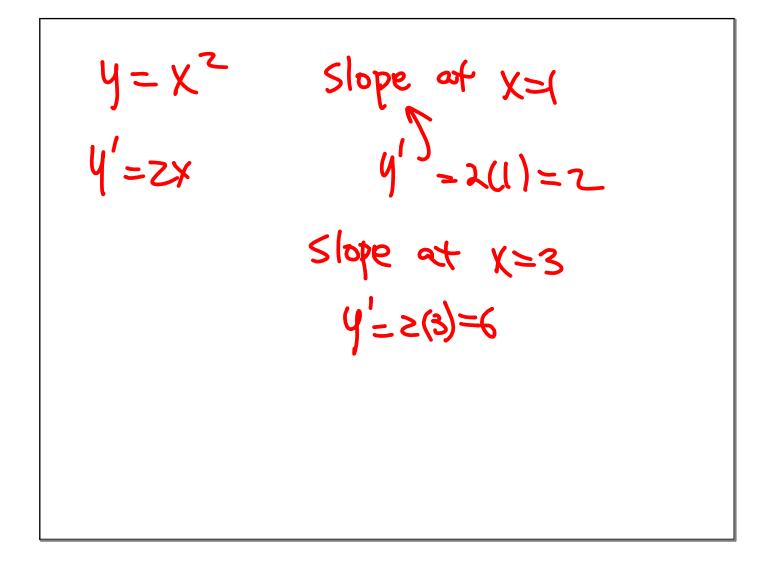
Find the slope of the tangont line at $x=3$
 $\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3} = 6$

$$(x, f(x))$$

$$(x+h, f(x+h)) \lim_{h \to 0} \frac{f(x+h) - f(x)}{x+h - x}$$
Shope at $x=x$

$$h \to 0 \quad x+h - x$$

$$derivative \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$


$$\frac{df}{dx}$$

$$f'$$

T.

what is the slope of

$$y = X^{27}$$
, $X^{2} + 2Xhth^{2}$
 $y' = \frac{dy}{dx} = \lim_{h \to 0} \frac{(X+h)^{2} - Y^{2}}{h} = \lim_{h \to 0} \frac{2XWth^{2}}{h}$
 $= \lim_{h \to 0} 2Xth = 2X$
 $h \to 0$

$$\boxed{27.} f(t) = \frac{2t+1}{t+3} \qquad f'(\infty)$$

$$\boxed{\lim_{h \to 0} \frac{f(t+h) - f(t)}{h}}$$