Fun. thm. it calculus
Let
$$g(x) = \int_{2}^{x} \frac{r+3}{r+3} dr = \frac{r^{2}}{2} + 3r \int_{2}^{x} \frac{r}{2} + 3r \int_{2}^{x} \frac{r}{2} + 3x - \frac{r^{2}}{2} + 3r \int_{2}^{x} \frac{r}{2} + 3x - \frac{r^{2}}{2} + 3r \int_{2}^{x} \frac{r}{2} +$$

Let
$$g(x) = \int_{\frac{\pi}{3}}^{x} \cos r \, dr$$

Find $\frac{dq}{dx}$. = $\sin r \int_{x}^{x} = \sin x - \sin \frac{\pi}{3}$
 $\frac{dq}{dx} = \cos x$ $\leftarrow g(x) = \sin x - \frac{\pi}{3}$
Let $f(x) = \int_{0}^{x} g(r) \, dr$
 $\frac{df}{dx} = g(x)$

1)
$$f(x) = \int_{3}^{x} 2r^{3} - \cos(r^{2}) dr$$

Find $\frac{df}{dx} = 2x^{3} - \cos(x^{2})$
2) $f(x) = \int_{x}^{3} \frac{2r^{3} - \cos(r^{2}) dr}{g(r)} dr = G(r) \int_{x}^{3} \frac{g(r)}{g(r)} dr$
Find $\frac{df}{dx} = -2x^{3} + \cos(x^{2}) = G(3) - G(x) + \frac{2}{3} - g(x)$

Let
$$f(x) = \int_{3}^{2x} \frac{e^{2x} - 1}{g^{(r)}} dr$$
 $e^{4x} - \frac{2}{x}$
Find $\frac{df}{dx} = 2e^{2x} - \frac{2}{x} \rightarrow 4e^{4x} - \frac{1}{x}$
 $= e^{2x} - \frac{1}{x} \rightarrow e^{4x} - \frac{1}{2x}$
 $G(r) \int_{3}^{2x} = G(2x) - G(3) = f(x)$
 $(e^{4x} - \frac{1}{2x}) = g(2x) \cdot z = \frac{df}{dx}$

Let
$$f(x) = \int_{a}^{a} h(r) dr$$

 $\frac{df}{dx} = h(ax) \frac{da}{dx}$

Let
$$f(x) = \int_{3}^{x^{2}} \sqrt{r - \cos r} dr$$

 $\frac{df}{dx} = \left(\sqrt{x^{2} - \cos(x^{2})} \right) (2x)$