$$
\text { 37. } \begin{aligned}
& \int_{1 / 2}^{\sqrt{3} / 2} \frac{6}{\sqrt{1-t^{2}}} d t \\
& \left.=6 \int_{\frac{1}{2}}^{\sqrt{3} / 2} \frac{1}{\sqrt{1-t^{2}}} d t=6\left(\sin ^{-1} t\right]_{\frac{1}{2}}^{\sqrt{3} / 2}\right) \\
& =6\left(\sin ^{-1} \frac{\sqrt{3}}{2}-\sin ^{-1} \frac{1}{2}\right) \\
& =6\left(\frac{\pi}{3}-\frac{\pi}{6}\right)=\pi
\end{aligned}
$$

$$
\begin{aligned}
& \text { 35. } \int_{1}^{9} \frac{1}{2 x} d x \\
& \left.=\frac{1}{2} \int_{1}^{9} \frac{1}{x}=\frac{1}{2}(\ln x]_{1}^{9}\right) \\
& =\frac{1}{2}(\ln 9-\ln 1) \\
& =\frac{1}{2} \ln 9=\ln 9^{1 / 2}=\ln 3
\end{aligned}
$$

41. $\int_{0}^{\pi} f(x) d x$ where $f(x)= \begin{cases}\sin x & \text { if } 0 \leqslant x<\pi / 2 \\ \cos x & \text { if } \pi / 2 \leqslant x \leqslant \pi\end{cases}$

$$
=\int_{0}^{\pi / 2} \sin x d x+\int_{\pi}^{\pi} \cos x d x=0
$$

$\left.-\cos x]_{0}^{\pi / 2}+\sin x\right]_{\frac{\pi}{2}}^{\pi}$
$=-\cos \frac{\pi}{2}-(-\cos 0)+\sin \pi-\sin \frac{\pi}{2}$

$$
=0+1+0-1=0
$$

