- 12. The position of a particle moving on the x-axis at time t > 0 seconds is: $x(t) = e^t \sqrt{t}$ feet.
 - (a) Find the average velocity of the particle over the interval $1 \le t \le 3$.
 - (b) In what direction and how fast is the particle moving at t = 1 seconds? (c) When is the particle moving to the right?
 - (d) Find the position of the particle when its velocity is zero.

$$X(1) = 2.218 ft/sec$$

$$\text{MOVING Red RADIAN MP}$$

$$\text{MOVING Red at } 2.218282219$$

$$\text{MoVING Red RADIAN MP}$$

$$\text{MoVING Red RADIAN MP}$$

$$\text{Y2(1)}$$

$$2.218282219$$

$$\text{MoVING Red RADIAN MP}$$

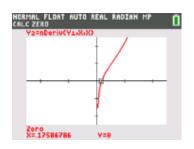
$$\text{Y2(1)}$$

$$\text{NOVING Red RADIAN MP}$$

$$\text{NOVING Red RADIA$$

moving teft at 3 ft/sec V moving left at 3 ft/sec

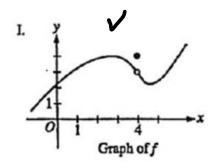
c) t>.176 b/c morly Rt -> V>0

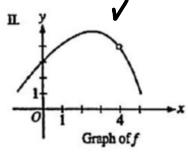


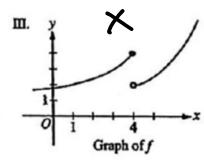
d) X(.176) = .773

NORMAL FLOAT AUTO REAL RADIAH MP	0
X	
.175867 Yı(Ans)	8639
.772914	4788

10. For which of the following does $\lim_{x\to 4} f(x)$ exist?

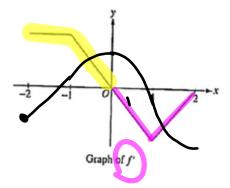






- (a) I only
- (b) II only
- (c) III only
- (d) and II only
- (e) I and III only

- 3. The graph of f'(x), the derivative of the function f, is shown below. Which of the following statements is true about f?
 - (a) f is decreasing for $-1 \le x \le 1$.
 - (b) is increasing for $-2 \le x \le 0$.
 - (c) f is increasing for $1 \le x \le 2$.
 - (d) f has a local minimum at x = 0.
 - (e) f is not differentiable at x = -1 and x = 1.



13. Let f be the function given by $f(x) = 3e^{2x}$ and let g be the function given by $g(x) = 6x^3$. At what value of x do the graphs of f and g have parallel tangent lines?

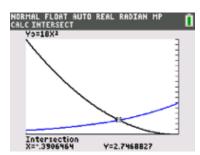
(a) -0.701

(b) -0.567

(c) -0.391

(d) -0.302

(e) -0.258



$$6e^{2x} = 18x^{2}$$

18. Given:
$$f(x) = 5x^3 + x$$
. If $g(x) = f^{-1}(x)$, find $g'(6)$. $= \frac{1}{f'(1)} = \frac{1}{16}$

$$f(a) = b \qquad g(b) = a$$

$$f'(a) = \frac{1}{g'(6)}$$

$$f'(1) = \frac{1}{16}$$