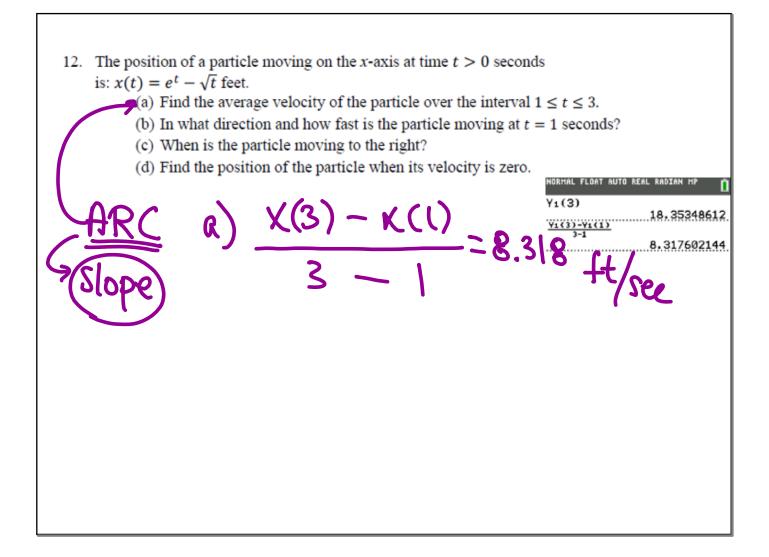

```
8.
```


					Y			
x	0	0 < x < 1	1	1 < x < 2	2	2 < x < 3	3	3 < x < 4
f(x)	-1	Negative	0	Positive	2	Positive	0	Negative
f'(x)	4	Positive	0	Positive	DNE	Negative	-3	Negative
f''(x)	-2	Negative	0	Positive	DNE	Negative	0	Positive
				1 1				$\overline{\mathbf{n}}$

. Let f be a function that is continuous on the interval [6, 4]. The function f is twice differentiable except at x = 2. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of f do not exist at x = 2.

- (a) For 0 < x < 4, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.
- a) rel max x=2 $b[cf'+ \rightarrow -$ (b) On the axes provided, sketch the graph of a function that has all the characteristics of f. (Note: Use the axes provided in the pink test booklet.)

9. Consider the curve given by
$$y^2 = 2 + xy$$

(a) Show that $\frac{dy}{dx} = \frac{y}{2y-x}$
(b) Find all points (x, y) on the curve where the line tangent to the curve has a slope $\frac{1}{2}$.
(c) Show that there are no points (x, y) on the curve where the line tangent to the curve is biozontal.
(d) Let x and y be functions of time r that are related by the equation $y^2 = 2 + xy$. At time $t = 5$, the value of y is 3 and $\frac{dy}{dt} = 6$. Find the value of $\frac{dy}{dt}$ at time $t = 5$.
(a) $2yy' = y + xy'$ $y' = 4 + xy'$ $y' = \frac{dy}{dt} = \frac$

d)
$$y^{2} = 2t xy$$

 $y^{4} = 3$ $t = 5$
 $dy = 6$ $dx = ?$
 $3^{2} = 2 + \chi(3)$
 $7 = 3x$
 $\frac{1}{3} = x$
 $2^{1}dy = dx = \frac{1}{3} = \frac{1}{3} + \frac{1}$

January 14, 2020

